5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 10
Oct.  2011
Turn off MathJax
Article Contents

Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila

doi: 10.1016/j.jgg.2011.09.007
More Information
  • Corresponding author: E-mail address: leizhou@ufl.edu (Lei Zhou)
  • Received Date: 2011-08-16
  • Accepted Date: 2011-09-14
  • Rev Recd Date: 2011-09-13
  • Available Online: 2011-09-24
  • Publish Date: 2011-10-20
  • Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity. PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications, respectively, and thus maintaining the expression status of homeotic genes. Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers. Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis. Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer. It is anticipated that Drosophila melanogaster, the model organism that contributed significantly to our understanding of the functional role of histone regulation in development, could also provide unique insight for our understanding of how histone dysregulation can lead to cancer. In this review, we will discuss several recent advances in this regard.
  • loading
  • [1]
    Agger, K., Cloos, P.A.C., Christensen, J. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development Nature, 449 (2007),pp. 731-734
    [2]
    Akasaka, T., Kanno, M., Balling, R. et al. Development, 122 (1996),pp. 1513-1522
    [3]
    Beke, L., Nuytten, M., Van Eynde, A. et al. The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2 Oncogene, 26 (2007),pp. 4590-4595
    [4]
    Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells Cell, 125 (2006),pp. 315-326
    [5]
    Beuchle, D., Struhl, G., Muller, J. Development, 128 (2001),pp. 993-1004
    [6]
    Breen, T.R., Harte, P.J. Mechanisms Dev., 35 (1991),pp. 113-127
    [7]
    Cao, R., Tsukada, Y.-i., Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing Mol. Cell, 20 (2005),pp. 845-854
    [8]
    Cao, R., Wang, L., Wang, H. et al. Role of histone H3 Lysine 27 methylation in polycomb-group silencing Science, 298 (2002),pp. 1039-1043
    [9]
    Caretti, G., Di Padova, M., Micales, B. et al. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation Genes Dev., 18 (2004),pp. 2627-2638
    [10]
    Chen, H., Tu, S.-w., Hsieh, J.-T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer J. Biol. Chem., 280 (2005),pp. 22437-22444
    [11]
    Classen, A.K., Bunker, B.D., Harvey, K.F. et al. Nat. Genet., 41 (2009),pp. 1150-1155
    [12]
    Core, N., Bel, S., Gaunt, S.J. et al. Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice Development, 124 (1997),pp. 721-729
    [13]
    Czermin, B., Melfi, R., McCabe, D. et al. Cell, 111 (2002),pp. 185-196
    [14]
    Dalgliesh, G.L., Furge, K., Greenman, C. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes Nature, 463 (2010),pp. 360-363
    [15]
    de Napoles, M., Mermoud, J.E., Wakao, R. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation Dev. Cell., 7 (2004),pp. 663-676
    [16]
    del Mar Lorente, M., Marcos-Gutierrez, C., Perez, C. et al. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice Development, 127 (2000),pp. 5093-5100
    [17]
    Di Stefano, L., Walker, J.A., Burgio, G. et al. Genes Dev., 25 (2011),pp. 17-28
    [18]
    Ezhkova, E., Pasolli, H.A., Parker, J.S. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells Cell, 136 (2009),pp. 1122-1135
    [19]
    Fraga, M.F., Ballestar, E., Villar-Garea, A. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer Nat. Genet., 37 (2005),pp. 391-400
    [20]
    Gazin, C., Wajapeyee, N., Gobeil, S. et al. An elaborate pathway required for Ras-mediated epigenetic silencing Nature, 449 (2007),pp. 1073-1077
    [21]
    Gui, Y., Guo, G., Huang, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder Nat. Genet., 330 (2011),pp. 228-231
    [22]
    Gupta, R.A., Shah, N., Wang, K.C. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis Nature, 464 (2010),pp. 1071-1076
    [23]
    Herz, H.M., Madden, L.D., Chen, Z. et al. Mol. Cell. Biol., 30 (2010),pp. 2485-2497
    [24]
    Hong, S., Cho, Y.-W., Yu, L.-R. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18439-18444
    [25]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1080
    [26]
    Jones, P.A., Baylin, S.B. The fundamental role of epigenetic events in cancer Nat. Rev. Genet., 3 (2002),pp. 415-428
    [27]
    Jurgens, G. Nature, 316 (1985),pp. 153-155
    [28]
    Kleer, C.G., Cao, Q., Varambally, S. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11606-11611
    [29]
    Lee, M.G., Norman, J., Shilatifard, A. et al. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a Polycomb-like protein Cell, 128 (2007),pp. 877-887
    [30]
    Lee, T.I., Jenner, R.G., Boyer, L.A. et al. Control of developmental regulators by Polycomb in human embryonic stem cells Cell, 125 (2006),pp. 301-313
    [31]
    Levine, S.S., Weiss, A., Erdjument-Bromage, H. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans Mol. Cell. Biol., 22 (2002),pp. 6070-6078
    [32]
    Lewis, E.B. Nature, 276 (1978),pp. 565-570
    [33]
    Lewis, P.H. , 21 (1947),p. 69
    [34]
    Li, X., Han, Y., Xi, R. Genes Dev., 24 (2010),pp. 933-946
    [35]
    Lin, N., Li, X., Cui, K. et al. Mol. Cell. Biol., 31 (2011),pp. 2729-2741
    [36]
    Martinez, A.M., Schuettengruber, B., Sakr, S. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling Nat. Genet., 41 (2009),pp. 1076-1082
    [37]
    Mills, A.A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins Nat. Rev. Cancer, 10 (2010),pp. 669-682
    [38]
    Mimori, K., Ogawa, K., Okamoto, M. et al. Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases Eur. J. Surg. Oncol., 31 (2005),pp. 376-380
    [39]
    Muller, H.J. Further studies on the nature and causes of gene mutations Proc. 6th Int. Congr. Genet., 1 (1932),pp. 213-255
    [40]
    Müller, J., Hart, C.M., Francis, N.J. et al. Cell, 111 (2002),pp. 197-208
    [41]
    Muller, J., Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes Curr. Opin. Genet. Dev., 19 (2009),pp. 150-158
    [42]
    Mulligan, P., Yang, F., Di Stefano, L. et al. A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development Mol. Cell, 42 (2011),pp. 689-699
    [43]
    Ohm, J.E., McGarvey, K.M., Yu, X. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing Nat. Genet., 39 (2007),pp. 237-242
    [44]
    Oktaba, K., Gutierrez, L., Gagneur, J. et al. Dev. Cell, 15 (2008),pp. 877-889
    [45]
    Orlando, V., Paro, R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns Curr. Opin. Genet. Dev., 5 (1995),pp. 174-179
    [46]
    Pardal, R., Clarke, M.F., Morrison, S.J. Applying the principles of stem-cell biology to cancer Nat. Rev. Cancer, 3 (2003),pp. 895-902
    [47]
    Pearson, J.C., Lemons, D., McGinnis, W. Modulating Hox gene functions during animal body patterning Nat. Rev. Genet., 6 (2005),pp. 893-904
    [48]
    Pirrotta, V. Trends Genet., 13 (1997),pp. 314-318
    [49]
    Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development Nature, 447 (2007),pp. 425-432
    [50]
    Santos-Rosa, H., Schneider, R., Bannister, A.J. et al. Active genes are tri-methylated at K4 of histone H3 Nature, 419 (2002),pp. 407-411
    [51]
    Saurin, A.J., Shao, Z., Erdjument-Bromage, H. et al. Nature, 412 (2001),pp. 655-660
    [52]
    Schuettengruber, B., Cavalli, G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice Development, 136 (2009),pp. 3531-3542
    [53]
    Schwartz, Y.B., Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes Nat. Rev. Genet., 8 (2007),pp. 9-22
    [54]
    Shao, Z., Raible, F., Mollaaghababa, R. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex Cell, 98 (1999),pp. 37-46
    [55]
    Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease Nat. Rev. Genet., 8 (2007),pp. 829-833
    [56]
    Smith, C.L., Peterson, C.L. ATP-dependent chromatin remodeling Curr. Top Dev. Biol., 65 (2005),pp. 115-148
    [57]
    Soria, C., Estermann, F.E., Espantman, K.C. et al. Heterochromatin silencing of p53 target genes by a small viral protein Nature, 466 (2010),pp. 1076-1081
    [58]
    Soto-Reyes, E., Recillas-Targa, F. Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines Oncogene, 29 (2010),pp. 2217-2227
    [59]
    Sparmann, A., van Lohuizen, M. Polycomb silencers control cell fate, development and cancer Nat. Rev. Cancer, 6 (2006),pp. 846-856
    [60]
    Strahl, B.D., Allis, C.D. The language of covalent histone modifications Nature, 403 (2000),pp. 41-45
    [61]
    Struhl, G. J. Embryol. Exp. Morphol., 76 (1983),pp. 297-331
    [62]
    Tan, Y., Yamada-Mabuchi, M., Arya, R. et al. Coordinated expression of cell death genes regulates neuroblast apoptosis Development, 138 (2011),pp. 2197-2206
    [63]
    van Haaften, G., Dalgliesh, G.L., Davies, H. et al. Nat. Genet., 41 (2009),pp. 521-523
    [64]
    van Kemenade, F.J., Raaphorst, F.M., Blokzijl, T. et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma Blood, 97 (2001),pp. 3896-3901
    [65]
    Varambally, S., Dhanasekaran, S.M., Zhou, M. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer Nature, 419 (2002),pp. 624-629
    [66]
    Vignali, M., Hassan, A.H., Neely, K.E. et al. ATP-dependent chromatin-remodeling complexes Mol. Cell. Biol., 20 (2000),pp. 1899-1910
    [67]
    Visser, H.P.J., Gunster, M.J., Kluin-Nelemans, H.C. et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma Brit. J. Haematol., 112 (2001),pp. 950-958
    [68]
    Wang, H., Wang, L., Erdjument-Bromage, H. et al. Role of histone H2A ubiquitination in Polycomb silencing Nature, 431 (2004),pp. 873-878
    [69]
    Witcher, M., Emerson, B.M. Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary Mol. Cell, 34 (2009),pp. 271-284
    [70]
    Zhang, Y., Lin, N., Carroll, P.M. et al. Dev. Cell, 14 (2008),pp. 481-493
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return