[1] |
Ahn, S.N., Suh, J.P., Oh, C.S. et al. Development of introgression lines of weedy rice in the background of Tongil-type rice Rice Genet. Newsl., 19 (2002),p. 14
|
[2] |
Ando, T., Yamamoto, T., Shimizu, T. et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice Theor. Appl. Genet., 116 (2008),pp. 881-890
|
[3] |
Baxter, C.J., Sabar, M., Quick, W.P. et al. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits J. Exp. Bot., 56 (2005),pp. 1591-1604
|
[4] |
Champoux, M.C., Wang, G., Sarkarung, S. et al. Theor. Appl. Genet., 90 (1995),pp. 969-981
|
[5] |
Clark, L.J., Price, A.H., Steele, K.A. et al. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice Funct. Plant Biol., 35 (2008),pp. 1163-1171
|
[6] |
Coudert, Y., Périn, C., Courtois, B. et al. Genetic control of root development in rice, the model cereal Trends Plant Sci., 15 (2010),pp. 219-226
|
[7] |
Courtois, B., Ahmadi, N., Khowaja, F. et al. Rice root genetic architecture: meta-analysis from a drought QTL database rice Rice, 2 (2009),pp. 115-128
|
[8] |
Courtois, B., Shen, L., Petalcorin, W. et al. Locating QTLs controlling constitutive root traits in the rice population IAC 165×Co39 Euphytica, 134 (2003),pp. 335-345
|
[9] |
Cui, K., Huang, J., Xing, Y. et al. Physiol. Plantarum, 132 (2008),pp. 53-68
|
[10] |
Eshed, Y., Zamir, D. Theor. Appl. Genet., 88 (1994),pp. 891-897
|
[11] |
Eshed, Y., Zamir, D. Genetics, 141 (1995),pp. 1147-1162
|
[12] |
Fu, B.Y., Xiong, J.H., Zhu, L.H. et al. Identification of functional candidate genes for drought tolerance in rice Mol. Genet. Genomics, 278 (2007),pp. 599-609
|
[13] |
Fukai, S., Cooper, M. Development of drought-resistant cultivars using physiomorphological traits in rice Field Crops Res., 40 (1995),pp. 67-86
|
[14] |
Gowda, V.R.P., Henrya, A., Yamauchic, A. et al. Root biology and genetic improvement for drought avoidance in rice Field Crops Res., 122 (2011),pp. 1-13
|
[15] |
Hu, H., Dai, M., Yao, J. et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 12987-12992
|
[16] |
Ingram, K.T., Bueno, F.D., Namuco, O.S. et al.
|
[17] |
Lander, E.S., Green, P., Abrahamson, J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 1 (1987),pp. 174-181
|
[18] |
Li, Z., Mu, P., Li, C. et al. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments Theor. Appl. Genet., 110 (2005),pp. 1244-1252
|
[19] |
Li, Z.K., Fu, B.Y., Gao, Y.M. et al. Plant. Mol. Biol., 59 (2005),pp. 33-52
|
[20] |
Ling, Z., Li, Z., Yu, R. et al. J. China Agri. Univ., 7 (2002),pp. 7-11
|
[21] |
Ling, Q., Lu, W., Cai, J. et al. The relationship between root distribution and leaf angle in rice plant Acta Agron. Sin., 15 (1989),pp. 123-131
|
[22] |
Liu, L., Mu, P., Li, X. et al. Euphytica, 164 (2008),pp. 729-737
|
[23] |
Liu, S., Zhou, R., Dong, Y. et al. Development, utilization of introgression lines using a synthetic wheat as donor Theor. Appl. Genet., 112 (2006),pp. 1360-1373
|
[24] |
MacMillan, K., Emrich, K., Piepho, H.P. et al. Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II conventional QTL analysis Theor. Appl. Genet., 113 (2006),pp. 953-964
|
[25] |
Manly, K.F., Cudmore, R.H., Meer, J.M. Map Manager QTX, cross-platform software for genetic mapping Mamm. Genome, 12 (2001),pp. 930-932
|
[26] |
McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
|
[27] |
Nguyen, H.T., Babu, R.C., Blum, A. Breeding for drought resistance in rice: physiological and molecular genetics considerations Crop Sci., 37 (1997),pp. 1426-1434
|
[28] |
O’Toole, J.C.
|
[29] |
Obara, M., Tamura, W., Ebitani, T. et al. Theor. Appl. Genet., 121 (2010),pp. 535-547
|
[30] |
Panaud, O., Chen, X., McCouch, S.R. Mol. Gen. Genet., 252 (1996),pp. 597-607
|
[31] |
Paterson, A.H., Deverna, J.W., Lanini, B. et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato Genetics, 124 (1990),pp. 735-742
|
[32] |
Pestsova, E.G., Börner, A., Röoder, M.S. Theor. Appl. Genet., 112 (2006),pp. 634-647
|
[33] |
Price, A.H., Steele, K.A., Moore, B.J. et al. Theor. Appl. Genet., 100 (2000),pp. 49-56
|
[34] |
Price, A.H., Tomos, A.D., Virk, D.S. Theor. Appl. Genet., 95 (1997),pp. 132-142
|
[35] |
Qu, Y., Mu, P., Zhang, H. et al. Mapping QTLs of root morphological traits at different growth stages in rice Genetica, 133 (2008),pp. 187-200
|
[36] |
Ray, J.D., Yu, L., McCouch, S.R. et al. Theor. Appl. Genet., 92 (1996),pp. 627-636
|
[37] |
Rogers, O.S., Bendich, A.J. Extraction of DNA from plant tissue Plant Mol. Biol. Manual, A6 (1988),pp. 1-10
|
[38] |
Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
|
[39] |
Takeuchi, Y., Ebitahi, T., Yamamoto, T. et al. Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection Breed. Sci., 56 (2006),pp. 405-413
|
[40] |
Tanksley, S.D., Nelson, J.C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines Theor. Appl. Genet., 92 (1996),pp. 191-203
|
[41] |
Temnykh, S., DeClerck, G., Lukashova, A. et al. Genome Res., 11 (2001),pp. 1441-1452
|
[42] |
Temnykh, S., Park, W.D., Ayres, N. et al. Theor. Appl. Genet., 100 (2000),pp. 697-712
|
[43] |
Tian, F., Li, D.J., Fu, Q. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
|
[44] |
Uga, Y., Okuno, K., Yano, M. J. Exp. Bot., 62 (2011),pp. 2485-2494
|
[45] |
Van, B.R. GGT: software for the display of graphical genotypes J. Hered., 90 (1999),pp. 328-329
|
[46] |
Wang, H., Zhang, H., Gao, F. et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray Theor. Appl. Genet., 115 (2007),pp. 1109-1126
|
[47] |
Yambao, E.B., Ingram, K.T., Real, J.G. Root xylem influences on the water relations and drought resistance of rice J. Exp. Bot., 43 (1992),pp. 925-932
|
[48] |
Yoshida, S., Forno, D.A., Cock, J.H. et al.
|
[49] |
Young, N.D., Tanksley, S.D. Restriction fragment length polymorphism maps and the concept of graphical genotypes Theor. Appl. Genet., 77 (1989),pp. 95-101
|
[50] |
Yue, B., Xiong, L., Xue, W. et al. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil Theor. Appl. Genet., 111 (2005),pp. 1127-1136
|
[51] |
Yue, B., Xue, W., Xiong, L. et al. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance Genetics, 172 (2006),pp. 1213-1228
|
[52] |
Zhang, J., Zheng, H.G., Aarti, A. et al. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species Theor. Appl. Genet., 103 (2001),pp. 19-29
|