5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 11
Nov.  2011
Turn off MathJax
Article Contents

Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes

doi: 10.1016/j.jgg.2011.08.005
More Information
  • Corresponding author: E-mail address: lizichao@cau.edu.cn (Zichao Li)
  • Received Date: 2011-02-13
  • Accepted Date: 2011-08-04
  • Rev Recd Date: 2011-08-01
  • Available Online: 2011-08-19
  • Publish Date: 2011-11-20
  • Introgression lines (ILs) are valuable materials for identifying quantitative trait loci (QTLs), evaluating genetic interactions, and marker assisted breeding. A set of 430 ILs (BC5F3) containing segments from upland tropical japonica cultivar IRAT109 in a lowland temperate japonica cultivar Yuefu background were developed. One hundred and seventy-six polymorphic markers were used to identify introgressed segments. No segment from IRAT109 was found in 160 lines. Introgressed segments of the other 270 lines covered 99.1% of the donor genome. The mean number of introgressed donor segments per individual was 3.3 with an average length of 14.4 cM. QTL analysis was conducted on basal root thickness (BRT) of the 270 ILs grown under irrigated lowland, upland and hydroponic conditions. A total of 22 QTLs affecting BRT were identified, six QTLs (qBRT3.1, qBRT3.2, qBRT6.1, qBRT8.2, qBRT9.1, and qBRT9.2) were consistently expressed under at least two environments (location and water regime), and qBRT7.2 was a new BRT QTL identified under lowland conditions. IL255 containing qBRT9.1 showed an increase of 10.09% and 7.07% BRT over cultivar Yuefu when grown under upland and lowland conditions, respectively. Using a population of 304 F2:3 lines derived from the cross IL255×Yuefu, qBRT9.1 was validated and mapped to a 1.2 cM interval between RM24271 and RM566. The presence ofqBRT9.1 explained 12% of BRT variation. The results provide upland rice ILs and BRT QTLs for analyzing the genetic basis of drought resistance, detecting favorable genes from upland rice, and rice drought resistance breeding.
  • loading
  • [1]
    Ahn, S.N., Suh, J.P., Oh, C.S. et al. Development of introgression lines of weedy rice in the background of Tongil-type rice Rice Genet. Newsl., 19 (2002),p. 14
    [2]
    Ando, T., Yamamoto, T., Shimizu, T. et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice Theor. Appl. Genet., 116 (2008),pp. 881-890
    [3]
    Baxter, C.J., Sabar, M., Quick, W.P. et al. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits J. Exp. Bot., 56 (2005),pp. 1591-1604
    [4]
    Champoux, M.C., Wang, G., Sarkarung, S. et al. Theor. Appl. Genet., 90 (1995),pp. 969-981
    [5]
    Clark, L.J., Price, A.H., Steele, K.A. et al. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice Funct. Plant Biol., 35 (2008),pp. 1163-1171
    [6]
    Coudert, Y., Périn, C., Courtois, B. et al. Genetic control of root development in rice, the model cereal Trends Plant Sci., 15 (2010),pp. 219-226
    [7]
    Courtois, B., Ahmadi, N., Khowaja, F. et al. Rice root genetic architecture: meta-analysis from a drought QTL database rice Rice, 2 (2009),pp. 115-128
    [8]
    Courtois, B., Shen, L., Petalcorin, W. et al. Locating QTLs controlling constitutive root traits in the rice population IAC 165×Co39 Euphytica, 134 (2003),pp. 335-345
    [9]
    Cui, K., Huang, J., Xing, Y. et al. Physiol. Plantarum, 132 (2008),pp. 53-68
    [10]
    Eshed, Y., Zamir, D. Theor. Appl. Genet., 88 (1994),pp. 891-897
    [11]
    Eshed, Y., Zamir, D. Genetics, 141 (1995),pp. 1147-1162
    [12]
    Fu, B.Y., Xiong, J.H., Zhu, L.H. et al. Identification of functional candidate genes for drought tolerance in rice Mol. Genet. Genomics, 278 (2007),pp. 599-609
    [13]
    Fukai, S., Cooper, M. Development of drought-resistant cultivars using physiomorphological traits in rice Field Crops Res., 40 (1995),pp. 67-86
    [14]
    Gowda, V.R.P., Henrya, A., Yamauchic, A. et al. Root biology and genetic improvement for drought avoidance in rice Field Crops Res., 122 (2011),pp. 1-13
    [15]
    Hu, H., Dai, M., Yao, J. et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 12987-12992
    [16]
    Ingram, K.T., Bueno, F.D., Namuco, O.S. et al.
    [17]
    Lander, E.S., Green, P., Abrahamson, J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 1 (1987),pp. 174-181
    [18]
    Li, Z., Mu, P., Li, C. et al. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments Theor. Appl. Genet., 110 (2005),pp. 1244-1252
    [19]
    Li, Z.K., Fu, B.Y., Gao, Y.M. et al. Plant. Mol. Biol., 59 (2005),pp. 33-52
    [20]
    Ling, Z., Li, Z., Yu, R. et al. J. China Agri. Univ., 7 (2002),pp. 7-11
    [21]
    Ling, Q., Lu, W., Cai, J. et al. The relationship between root distribution and leaf angle in rice plant Acta Agron. Sin., 15 (1989),pp. 123-131
    [22]
    Liu, L., Mu, P., Li, X. et al. Euphytica, 164 (2008),pp. 729-737
    [23]
    Liu, S., Zhou, R., Dong, Y. et al. Development, utilization of introgression lines using a synthetic wheat as donor Theor. Appl. Genet., 112 (2006),pp. 1360-1373
    [24]
    MacMillan, K., Emrich, K., Piepho, H.P. et al. Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II conventional QTL analysis Theor. Appl. Genet., 113 (2006),pp. 953-964
    [25]
    Manly, K.F., Cudmore, R.H., Meer, J.M. Map Manager QTX, cross-platform software for genetic mapping Mamm. Genome, 12 (2001),pp. 930-932
    [26]
    McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [27]
    Nguyen, H.T., Babu, R.C., Blum, A. Breeding for drought resistance in rice: physiological and molecular genetics considerations Crop Sci., 37 (1997),pp. 1426-1434
    [28]
    O’Toole, J.C.
    [29]
    Obara, M., Tamura, W., Ebitani, T. et al. Theor. Appl. Genet., 121 (2010),pp. 535-547
    [30]
    Panaud, O., Chen, X., McCouch, S.R. Mol. Gen. Genet., 252 (1996),pp. 597-607
    [31]
    Paterson, A.H., Deverna, J.W., Lanini, B. et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato Genetics, 124 (1990),pp. 735-742
    [32]
    Pestsova, E.G., Börner, A., Röoder, M.S. Theor. Appl. Genet., 112 (2006),pp. 634-647
    [33]
    Price, A.H., Steele, K.A., Moore, B.J. et al. Theor. Appl. Genet., 100 (2000),pp. 49-56
    [34]
    Price, A.H., Tomos, A.D., Virk, D.S. Theor. Appl. Genet., 95 (1997),pp. 132-142
    [35]
    Qu, Y., Mu, P., Zhang, H. et al. Mapping QTLs of root morphological traits at different growth stages in rice Genetica, 133 (2008),pp. 187-200
    [36]
    Ray, J.D., Yu, L., McCouch, S.R. et al. Theor. Appl. Genet., 92 (1996),pp. 627-636
    [37]
    Rogers, O.S., Bendich, A.J. Extraction of DNA from plant tissue Plant Mol. Biol. Manual, A6 (1988),pp. 1-10
    [38]
    Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
    [39]
    Takeuchi, Y., Ebitahi, T., Yamamoto, T. et al. Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection Breed. Sci., 56 (2006),pp. 405-413
    [40]
    Tanksley, S.D., Nelson, J.C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines Theor. Appl. Genet., 92 (1996),pp. 191-203
    [41]
    Temnykh, S., DeClerck, G., Lukashova, A. et al. Genome Res., 11 (2001),pp. 1441-1452
    [42]
    Temnykh, S., Park, W.D., Ayres, N. et al. Theor. Appl. Genet., 100 (2000),pp. 697-712
    [43]
    Tian, F., Li, D.J., Fu, Q. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [44]
    Uga, Y., Okuno, K., Yano, M. J. Exp. Bot., 62 (2011),pp. 2485-2494
    [45]
    Van, B.R. GGT: software for the display of graphical genotypes J. Hered., 90 (1999),pp. 328-329
    [46]
    Wang, H., Zhang, H., Gao, F. et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray Theor. Appl. Genet., 115 (2007),pp. 1109-1126
    [47]
    Yambao, E.B., Ingram, K.T., Real, J.G. Root xylem influences on the water relations and drought resistance of rice J. Exp. Bot., 43 (1992),pp. 925-932
    [48]
    Yoshida, S., Forno, D.A., Cock, J.H. et al.
    [49]
    Young, N.D., Tanksley, S.D. Restriction fragment length polymorphism maps and the concept of graphical genotypes Theor. Appl. Genet., 77 (1989),pp. 95-101
    [50]
    Yue, B., Xiong, L., Xue, W. et al. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil Theor. Appl. Genet., 111 (2005),pp. 1127-1136
    [51]
    Yue, B., Xue, W., Xiong, L. et al. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance Genetics, 172 (2006),pp. 1213-1228
    [52]
    Zhang, J., Zheng, H.G., Aarti, A. et al. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species Theor. Appl. Genet., 103 (2001),pp. 19-29
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return