5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 7
Jul.  2011
Turn off MathJax
Article Contents

Recent progress in the genetics of generalized vitiligo

doi: 10.1016/j.jgg.2011.05.005
More Information
  • Corresponding author: E-mail address: richard.spritz@ucdenver.edu (Richard A. Spritz)
  • Received Date: 2011-04-14
  • Accepted Date: 2011-05-23
  • Rev Recd Date: 2011-05-18
  • Available Online: 2011-06-12
  • Publish Date: 2011-07-20
  • Vitiligo is an acquired disease characterized principally by patchy depigmentation of skin and overlying hair. Generalized vitiligo (GV), the predominant form of the disorder, results from autoimmune loss of melanocytes from affected regions. GV is a “complex trait”, inherited in a non-Mendelian polygenic, multifactorial manner. GV is epidemiologically associated with other autoimmune diseases, both in GV patients and in their close relatives, suggesting that shared genes underlie susceptibility to this group of diseases. Early candidate gene association studies yielded a few successes, such as PTPN22, but most such reports now appear to be false-positives. Subsequent genomewide linkage studies identified NLRP1 and XBP1, apparent true GV susceptibility genes involved in immune regulation, and recent genome-wide association studies (GWAS) of GV in Caucasian and Chinese populations have yielded a large number of additional validated GV susceptibility genes. Together, these genes highlight biological systems and pathways that reach from the immune cells to the melanocyte, and provide insights into both disease pathogenesis and potential new targets for both treatment and even prevention of GV and other autoimmune diseases in genetically susceptible individuals.
  • loading
  • [1]
    Addison, T.
    [2]
    al-Fouzan, A., al-Arbash, M., Fouad, F. Study of HLA class I/IL and T lymphocyte subsets in Kuwaiti vitiligo patients Eur. J. Immunogenet., 22 (1995),pp. 209-213
    [3]
    Alkhateeb, A., Qarqaz, F. Arch. Dermatol. Res., 302 (2010),pp. 631-634
    [4]
    Alkhateeb, A., Stetler, G.L., Old, W. et al. Hum. Mol. Genet., 11 (2002),pp. 661-667
    [5]
    Alkhateeb, A., Fain, P.R., Thody, A. et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families Pigment Cell Res., 16 (2003),pp. 208-214
    [6]
    Alkhateeb, A., Fain, P., Spritz, R.A. J. Invest. Dermatol., 125 (2005),pp. 388-391
    [7]
    Ando, I., Chi, H.I., Nakagawa, H. et al. Difference in clinical features and HLA antigens between familial and non-familial vitiligo of generalized type Br. J. Dermatol., 129 (1993),pp. 408-410
    [8]
    Arcos-Burgos, M., Parodi, E., Salgar, M. et al. Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA Hum. Genet., 110 (2002),pp. 334-342
    [9]
    Badri, A.M., Todd, P.M., Garioch, J.J. et al. An immunohistological study of cutaneous lymphocytes in vitiligo J. Pathol., 170 (1993),pp. 149-155
    [10]
    Birlea, S.A., Fain, P.R., Spritz, R.A. A Romanian population isolate with high frequency of vitiligo and associated autoimmune diseases Arch. Dermatol., 144 (2008),pp. 310-316
    [11]
    Birlea, S.A., Laberge, G.S., Procopciuc, L.M. et al. Pigment Cell Melanoma Res., 22 (2009),pp. 230-234
    [12]
    Birlea, S.A., Gowan, K., Fain, P.R. et al. J. Invest. Dermatol., 130 (2010),pp. 798-803
    [13]
    Birlea, S.A., Jin, Y., Bennett, D.C. et al. J. Invest. Dermatol., 131 (2011),pp. 371-381
    [14]
    Bishop, T.D., Demenais, F., Iles, M.M. et al. Genome-wide association study identifies three loci associated with melanoma risk Nat. Genet., 41 (2009),pp. 920-925
    [15]
    Blomhoff, A., Kemp, E.H., Gawkrodger, D.J. et al. Pigment Cell Res., 18 (2005),pp. 55-58
    [16]
    Boissy, R.E., Spritz, R.A. Frontiers and controversies in the pathobiology of vitiligo: separating the wheat from the chaff Exp. Dermatol., 18 (2009),pp. 583-585
    [17]
    Brand, O., Gough, S., Heward, J. Expert Rev. Mol. Med., 7 (2005),pp. 1-15
    [18]
    Cantón, I., Akhtar, S., Gavalas, N.G. et al. Genes Immun., 6 (2005),pp. 584-587
    [19]
    Casp, C.B., She, J.X., McCormack, W.T. Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo Genes Immun., 4 (2003),pp. 492-499
    [20]
    Chen, J.J., Huang, W., Gui, J.P. et al. A novel linkage to generalized vitiligo on 4q13-q21 identified in a genomewide linkage analysis of Chinese families Am. J. Hum. Genet., 76 (2005),pp. 1057-1065
    [21]
    De Iudicibus, S., Stocco, G., Martelossi, S. et al. Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases J. Clin. Gastroenterol., 45 (2011),pp. e1-e7
    [22]
    Dieudé, P., Guedj, M., Wipff, J. et al. NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis Ann. Rheum. Dis., 70 (2010),pp. 668-674
    [23]
    Fain, P.R., Gowan, K., LaBerge, G.S. et al. A genomewide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci Am. J. Hum. Genet., 72 (2003),pp. 1560-1564
    [24]
    Fain, P.R., Babu, S.R., Bennett, D.C. et al. HLA class II haplotype DRB1∗04-DQB1∗0301 contributes to risk of familial generalized vitiligo and early disease onset Pigment Cell Res., 19 (2006),pp. 51-57
    [25]
    Finco, O., Cuccia, M., Mantinetti, M. et al. Age of onset in vitiligo: relationship with HLA supratypes Clin. Genet., 39 (1991),pp. 448-454
    [26]
    Foley, L.M., Lowe, N.J., Misheloff, E. et al. Association of HLA-DR4 with vitiligo J. Am. Acad. Dermatol., 8 (1983),pp. 39-40
    [27]
    Freedman, M.L., Reich, D., Penney, K.L. et al. Assessing the impact of population stratification on genetic association studies Nat. Genet., 36 (2004),pp. 388-393
    [28]
    Gross, A., Tapia, F.J., Mosca, W. et al. Mononuclear cell subpopulations and infiltrating lymphocytes in erythema dyschromicum perstans and vitiligo Histol. Histopathol., 2 (1987),pp. 277-283
    [29]
    Gudbjartsson, D.F., Sulem, P., Stacey, S.N. et al. Nat. Genet., 40 (2008),pp. 886-891
    [30]
    Harsoulis, P., Kanakoudi-Tsakalidis, F., Vyzantiadis, A. et al. Autoimmunity and vitiligo Arch. Dermatol., 114 (1978),p. 1554
    [31]
    Hirschhorn, J.N., Lohmueller, K., Byrne, E. et al. A comprehensive review of genetic association studies Genet. Med., 4 (2002),pp. 45-60
    [32]
    Jin, Y., Mailloux, C.M., Gowan, K. et al. N. Engl. J. Med., 365 (2007),pp. 10-18
    [33]
    Jin, Y., Birlea, S.A., Fain, P.R. et al. J. Invest. Dermatol., 127 (2007),pp. 2558-2562
    [34]
    Jin, Y., Birlea, S.A., Fain, P.R. et al. N. Engl. J. Med., 362 (2010),pp. 1686-1697
    [35]
    Jin, Y., Birlea, S.A., Fain, P.R. et al. Nat. Genet., 42 (2010),pp. 576-578
    [36]
    Jin, Y., Birlea, S.A., Fain, P.R. et al. Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset J. Invest. Dermatol., 131 (2011),pp. 1308-1312
    [37]
    Johansson, C.M., Zunec, R., Garcia, M.A. et al. Chromosome 17p12-q11 harbors susceptibility loci for systemic lupus erythematosus Hum. Genet., 115 (2004),pp. 230-238
    [38]
    Kaser, A., Lee, A.H., Franke, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease Cell, 134 (2008),pp. 743-756
    [39]
    Kemp, E.H., Gavalas, N.G., Gawkrodger, D.J. et al. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo Autoimmun. Rev., 6 (2007),pp. 138-142
    [40]
    Kingo, K., Philips, M.A., Aunin, E. et al. J. Dermatol. Sci., 44 (2006),pp. 119-122
    [41]
    Laberge, G., Mailloux, C.M., Gowan, K. et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo Pigment Cell Res., 18 (2005),pp. 300-305
    [42]
    Laberge, G.S., Bennett, D.C., Fain, P.R. et al. J. Invest. Dermatol., 128 (2008),pp. 1757-1762
    [43]
    Laberge, G.S., Birlea, S.A., Fain, P.R. et al. Pigment Cell Melanoma Res., 21 (2008),pp. 206-208
    [44]
    Laddha, N.C., Dwivedi, M., Shajil, E.M. et al. J. Dermatol. Sci., 49 (2008),pp. 260-262
    [45]
    Lamkanfi, M., Dixit, V.M. Inflammasomes: guardians of cytosolic sanctity Immunol. Rev., 227 (2009),pp. 95-105
    [46]
    Le Poole, I.C., van den Wijngaard, R.M., Westerhof, W. et al. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance Am. J. Pathol., 148 (1996),pp. 1219-1228
    [47]
    Le Poole, I.C., Sarangarajan, R., Zhao, Y. et al. ‘VIT1’, a novel gene associated with vitiligo Pigment Cell Res., 14 (2001),pp. 475-484
    [48]
    Liang, Y., Yang, S., Zhou, Y. et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families J. Invest. Dermatol., 127 (2007),pp. 2552-2557
    [49]
    Liu, J.B., Li, M., Chen, H. et al. Association of vitiligo with HLA-A2: a meta-analysis J. Eur. Acad. Dermatol. Venereol., 21 (2007),pp. 205-213
    [50]
    Magitta, N.F., Bøe Wolff, A.S., Johansson, S. et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes Genes Immun., 10 (2009),pp. 120-124
    [51]
    Nath, S.K., Kelly, J.A., Namjou, B. et al. Am. J. Hum. Genet., 69 (2001),pp. 1401-1406
    [52]
    Neufeld, M., Blizzard, R.M.
    [53]
    Nordlund, J.J., Ortonne, J.-P., Le Poole, I.C.
    [54]
    Ogg, G.S., Dunbar, P., Romero, P. et al. High frequency of skin-homing melanocyte specific cytotoxic T lymphocytes in autoimmune vitiligo J. Exp. Med., 188 (1998),pp. 1203-1208
    [55]
    Ongenae, K., Van Geel, N., Naeyaert, J.-M. Evidence for an autoimmune pathogenesis of vitiligo Pigment Cell Res., 16 (2003),pp. 90-100
    [56]
    Orecchia, G., Perfetti, L., Malagoli, P. et al. Vitiligo is associated with a significant increase in HLA-A30, Cw6 and Dqw3 and a decrease in C4AQ0 in northern Italian patients Dermatology, 185 (1992),pp. 123-127
    [57]
    Pehlivan, S., Ozkinay, F., Alper, S. et al. Association between IL4 (-590), ACE (I)/(D), CCR5 (Δ32), CTLA4 (+49) and IL1-RN (VNTR in intron 2) gene polymorphisms and vitiligo Eur. J. Dermatol., 19 (2009),pp. 126-128
    [58]
    Philips, M.A., Kingo, K., Karelson, M. et al. Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1 BMC Med. Genet., 11 (2010),p. 56
    [59]
    [60]
    Pontillo, A., Vendramin, A., Catamo, E. et al. The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease Am. J. Gastroenterol., 106 (2011),pp. 539-544
    [61]
    Quan, C., Ren, Y.Q., Xiang, L.H. et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC Nat. Genet., 42 (2010),pp. 614-618
    [62]
    Ren, Y., Yang, S., Xu, S. et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo PLoS Genet., 5 (2009),p. e1000523
    [63]
    Schallreuter, K.U., Levenig, C., Kuhnl, P. et al. Histocompatibility antigens in vitiligo: Hamburg study on 102 patients from northern Germany Dermatology, 187 (1993),pp. 186-192
    [64]
    Schmidt, M. Eine biglanduiare Erkrankung (Nebennieren und Schilddruse) bei Morbus Addisonii Verh. Dtsch. Ges. Pathol., 21 (1926),pp. 212-221
    [65]
    Skipper, J.C.A., Hendrickson, R.C., Gulden, P.H. et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins J. Exp. Med., 183 (1996),pp. 527-534
    [66]
    Spritz, R.A. The genetics of generalized vitiligo Curr. Dir. Autoimmun., 10 (2008),pp. 244-257
    [67]
    Spritz, R.A. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma Genome Med., 2 (2010),p. 78
    [68]
    Spritz, R.A., Gowan, K., Bennett, D.C. et al. Am. J. Hum. Genet., 74 (2004),pp. 188-191
    [69]
    Strömberg, S., Björklund, M.G., Asplund, A. et al. Transcriptional profiling of melanocytes from patients with vitiligo vulgaris Pigment Cell Melanoma Res., 21 (2008),pp. 162-171
    [70]
    Sun, X., Xu, A., Wei, X. et al. Genetic epidemiology of vitiligo: a study of 815 probands and their families from south China Int. J. Dermatol., 45 (2006),pp. 1176-1181
    [71]
    Taïeb, A., Picardo, M. Vitiligo N. Engl. J. Med., 360 (2009),pp. 160-169
    [72]
    Tastan, H.B., Akar, A., Orkunoglu, F.E. et al. Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population Pigment Cell Res., 17 (2004),pp. 181-184
    [73]
    Toyofuku, K., Wada, I., Spritz, R.A. et al. The molecular basis of oculocutaneous albinism type 1 (OCA1): sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation Biochem. J., 355 (2001),pp. 259-269
    [74]
    Tripathi, R.K., Giebel, L.B., Strunk, K.M. et al. A polymorphism of the human tyrosinase gene that is associated with temperature-sensitive enzymatic activity Gene Expr., 1 (1991),pp. 103-110
    [75]
    Xia, Q., Zhou, W.M., Liang, Y.H. et al. MHC haplotypic association in Chinese Han patients with vitiligo J. Eur. Acad. Dermatol. Venereol., 20 (2006),pp. 941-946
    [76]
    Zamani, M., Spaepen, M., Sghar, S.S. et al. Linkage and association of HLA class II genes with vitiligo in a Dutch population Br. J. Dermatol., 145 (2001),pp. 90-94
    [77]
    Zurawek, M., Fichna, M., Januszkiewicz-Lewandowska, D. et al. Hum. Immunol., 71 (2010),pp. 530-534
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (73) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return