5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 5
May  2011
Turn off MathJax
Article Contents

Coevolution study of mitochondria respiratory chain proteins: Toward the understanding of protein–protein interaction

doi: 10.1016/j.jgg.2011.04.003
More Information
  • Corresponding author: E-mail address: xiaojingfa@big.ac.cn (Jingfa Xiao); E-mail address: junyu@big.ac.cn (Jun Yu)
  • Received Date: 2011-01-20
  • Accepted Date: 2011-04-09
  • Rev Recd Date: 2011-04-08
  • Available Online: 2011-04-15
  • Publish Date: 2011-05-20
  • Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein–protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using “Mirror tree” method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein–protein interaction in intra-complex and the binary protein–protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10−6). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein–protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study.
  • loading
  • [1]
    Altschuh, D., Lesk, A.M., Bloomer, A.C. et al. Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus J. Mol. Biol., 193 (1987),pp. 693-707
    [2]
    Andersson, S.G., Karlberg, O., Canback, B. et al. On the origin of mitochondria: a genomics perspective Philos. Trans. R Soc. Lond. B Biol. Sci., 358 (2003),pp. 165-177
    [3]
    Boekema, E.J., Braun, H.P. Supramolecular structure of the mitochondrial oxidative phosphorylation system J. Biol. Chem., 282 (2007),pp. 1-4
    [4]
    Burger, L., van Nimwegen, E. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method Mol. Syst. Biol., 4 (2008),p. 165
    [5]
    Cordero, O.X., Snel, B., Hogeweg, P. Coevolution of gene families in prokaryotes Genome Res., 18 (2008),pp. 462-468
    [6]
    Craig, R.A., Liao, L. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices BMC Bioinformatics, 8 (2007),p. 6
    [7]
    DiMauro, S., Schon, E.A. Mitochondrial respiratory-chain diseases N. Engl. J. Med., 348 (2003),pp. 2656-2668
    [8]
    Dimmic, M.W., Hubisz, M.J., Bustamante, C.D. et al. Detecting coevolving amino acid sites using Bayesian mutational mapping Bioinformatics, 21 (2005),pp. 126-135
    [9]
    Dudkina, N.V., Eubel, H., Keegstra, W. et al. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 3225-3229
    [10]
    Efron, B. Computers and the theory of statistics: thinking the unthinkable SIAM Rev., 21 (1979),pp. 460-480
    [11]
    Eswar, N., Webb, B., Marti-Renom, M.A. et al. Comparative protein structure modeling using modeller Curr. Protoc. Bioinformatics (2006)
    [12]
    Ettwiller, L., Veitia, R.A. Protein coevolution and isoexpression in yeast macromolecular complexes Comp. Funct. Genomics (2007),p. 58721
    [13]
    Fontanesi, F., Soto, I.C., Barrientos, A. Cytochrome c oxidase biogenesis: new levels of regulation IUBMB Life, 60 (2008),pp. 557-568
    [14]
    Fraser, H.B., Hirsh, A.E., Wall, D.P. et al. Coevolution of gene expression among interacting proteins Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9033-9038
    [15]
    Goh, C.S., Bogan, A.A., Joachimiak, M. et al. Co-evolution of proteins with their interaction partners J. Mol. Biol., 299 (2000),pp. 283-293
    [16]
    Jespers, L., Lijnen, H.R., Vanwetswinkel, S. et al. Guiding a docking mode by phage display: selection of correlated mutations at the staphylokinase-plasmin interface J. Mol. Biol., 290 (1999),pp. 471-479
    [17]
    Jothi, R., Kann, M.G., Przytycka, T.M. Predicting protein-protein interaction by searching evolutionary tree automorphism space Bioinformatics, 21 (2005),pp. 241-250
    [18]
    Pazos, F., Valencia, A.
    [19]
    Pazos, F., Helmer-Citterich, M., Ausiello, G. et al. Correlated mutations contain information about protein-protein interaction J. Mol. Biol., 271 (1997),pp. 511-523
    [20]
    Pellegrini, M., Marcotte, E.M., Thompson, M.J. et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 4285-4288
    [21]
    Phizicky, E.M., Fields, S. Protein-protein interactions: methods for detection and analysis Microbiol. Mol. Biol. Rev., 59 (1995),pp. 94-123
    [22]
    Press, W.H., Teukolsky, S.A., Vetterling, W.T. et al.
    [23]
    Radermacher, M., Ruiz, T., Clason, T. et al. The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme J. Struct. Biol., 154 (2006),pp. 269-279
    [24]
    Rustin, P., Chretien, D., Bourgeron, T. et al. Biochemical and molecular investigations in respiratory chain deficiencies Clin. Chim. Acta, 228 (1994),pp. 35-51
    [25]
    Sali, A., Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints J. Mol. Biol., 234 (1993),pp. 779-815
    [26]
    Schägger, H., Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria EMBO J., 19 (2000),pp. 1777-1783
    [27]
    Schägger, H., Pfeiffer, K. The ratio of oxidative phosphorylation complexes IV in bovine heart mitochondria and the composition of respiratory chain supercomplexes J. Biol. Chem., 276 (2001),pp. 37861-37867
    [28]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [29]
    Team RDC
    [30]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),pp. 4673-4680
    [31]
    Vonck, J., Schafer, E. Supramolecular organization of protein complexes in the mitochondrial inner membrane Biochim. Biophys. Acta, 1793 (2009),pp. 117-124
    [32]
    Yeang, C.H., Haussler, D. Detecting coevolution in and among protein domains PLoS Comput. Biol., 3 (2007),pp. 2122-2134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return