[1] |
Calderwood, S.K., Khaleque, M.A., Sawyer, D.B. et al. Heat shock proteins in cancer: chaperones of tumorigenesis Trends Biochem. Sci., 31 (2006),pp. 164-172
|
[2] |
Chen, X., Weisberg, E., Fridmacher, V. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor Nature, 389 (1997),pp. 85-89
|
[3] |
Chen, Y.G., Wang, Q., Lin, S.L. et al. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis Exp. Biol. Med. (Maywood), 231 (2006),pp. 534-544
|
[4] |
Feng, X.H., Derynck, R. Specificity and versatility in TGF-beta signaling through Smads Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 659-693
|
[5] |
Gorelik, L., Flavell, R.A. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease Immunity, 12 (2000),pp. 171-181
|
[6] |
Jung, J.H., Lee, J.O., Kim, J.H. et al. Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation J. Cell Physiol., 223 (2010),pp. 408-414
|
[7] |
Krakowski, A.R., Laboureau, J., Mauviel, A. et al. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 12437-12442
|
[8] |
Kunwar, P.S., Zimmerman, S., Bennett, J.T. et al. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in nodal signaling and mesendoderm induction Development, 130 (2003),pp. 5589-5599
|
[9] |
Li, Z., Srivastava, P. Heat-shock proteins Curr. Protoc. Immunol. (2004)
|
[10] |
Massague, J., Seoane, J., Wotton, D. Smad transcription factors Genes Dev., 19 (2005),pp. 2783-2810
|
[11] |
Meacham, G.C., Patterson, C., Zhang, W. et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation Nat. Cell Biol., 3 (2001),pp. 100-105
|
[12] |
Neupert, W., Brunner, M. The protein import motor of mitochondria Nat. Rev. Mol. Cell Biol., 3 (2002),pp. 555-565
|
[13] |
Nylandsted, J., Brand, K., Jaattela, M. Heat shock protein 70 is required for the survival of cancer cells Ann. N.Y. Acad. Sci., 926 (2000),pp. 122-125
|
[14] |
Ranelletti, F.O., Ricci, R., Larocca, L.M. et al. Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors Int. J. Cancer, 50 (1992),pp. 486-492
|
[15] |
Schmierer, B., Hill, C.S. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 970-982
|
[16] |
Sherman, M., Multhoff, G. Heat shock proteins in cancer Ann. N.Y. Acad. Sci., 1113 (2007),pp. 192-201
|
[17] |
Shi, Y., Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus Cell, 113 (2003),pp. 685-700
|
[18] |
Takaku, K., Oshima, M., Miyoshi, H. et al. Cell, 92 (1998),pp. 645-656
|
[19] |
Taylor, I.W., Wrana, J.L. SnapShot: the TGFbeta pathway interactome Cell, 133 (2008),p. 378
|
[20] |
Thomas, D.A., Massague, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance Cancer Cell, 8 (2005),pp. 369-380
|
[21] |
Xu, L., Chen, Y.G., Massague, J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation Nat. Cell Biol., 2 (2000),pp. 559-562
|
[22] |
Yang, Y., Janich, S., Cohn, J.A. et al. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 9480-9484
|