5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 2
Feb.  2011
Turn off MathJax
Article Contents

A systematic identification of Kolobok superfamily transposons in Trichomonas vaginalis and sequence analysis on related transposases

doi: 10.1016/j.jcg.2011.01.003
More Information
  • Corresponding author: E-mail address: husn@big.ac.cn (Songnian Hu); E-mail address: junyu@big.ac.cn (Jun Yu)
  • Received Date: 2010-11-17
  • Accepted Date: 2010-12-03
  • Rev Recd Date: 2010-12-02
  • Available Online: 2011-02-23
  • Publish Date: 2011-02-20
  • Transposons are sequence elements widely distributed among genomes of all three kingdoms of life, providing genomic changes and playing significant roles in genome evolution.Trichomonas vaginalis is an excellent model system for transposon study since its genome (∼160 Mb) has been sequenced and is composed of ∼65% transposons and other repetitive elements. In this study, we primarily report the identification of Kolobok-type transposons (termed tvBac) in T. vaginalis and the results of transposase sequence analysis. We categorized 24 novel subfamilies of the Kolobok element, including one autonomous subfamily and 23 non-autonomous subfamilies. We also identified a novel H2CH motif in tvBac transposases based on multiple sequence alignment. In addition, we supposed that tvBac and Mutator transposons may have evolved independently from a common ancestor according to our phylogenetic analysis. Our results provide basic information for the understanding of the function and evolution of tvBac transposons in particular and other related transposon families in general.
  • loading
  • [1]
    Bao, W., Jurka, M.G., Kapitonov, V.V. et al. New superfamilies of eukaryotic DNA transposons and their internal divisions Mol. Biol. Evol., 26 (2009),pp. 983-993
    [2]
    Biemont, C., Vieira, C. Genetics: junk DNA as an evolutionary force Nature, 443 (2006),pp. 521-524
    [3]
    Brookfield, J.F. The ecology of the genome—mobile DNA elements and their hosts Nat. Rev. Genet., 6 (2005),pp. 128-136
    [4]
    Bushman, F.D., Engelman, A., Palmer, I. et al. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 3428-3432
    [5]
    Carlton, J.M., Hirt, R.P., Silva, J.C. et al. Science, 315 (2007),pp. 207-212
    [6]
    Chalvet, F., Grimaldi, C., Kaper, F. et al. Mol. Biol. Evol., 20 (2003),pp. 1362-1375
    [7]
    Diao, X., Freeling, M., Lisch, D. Horizontal transfer of a plant transposon PLoS Biol., 4 (2006),p. e5
    [8]
    Eickbush, T.H. Telomerase and retrotransposons: which came first? Science, 277 (1997),pp. 911-912
    [9]
    Eijkelenboom, A.P., van den Ent, F.M., Vos, A. et al. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc Curr. Biol., 7 (1997),pp. 739-746
    [10]
    Eisen, J.A., Benito, M.I., Walbot, V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences Nucleic Acids Res., 22 (1994),pp. 2634-2636
    [11]
    Gunderson, J., Hinkle, G., Leipe, D. et al. Phylogeny of trichomonads inferred from small-subunit rRNA sequences J. Eukaryot. Microbiol., 42 (1995),pp. 411-415
    [12]
    Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT Nucl. Acids Symp. Ser., 41 (1999),p. 4
    [13]
    Haren, L., Ton-Hoang, B., Chandler, M. Integrating DNA: transposases and retroviral integrases Annu. Rev. Microbiol., 53 (1999),pp. 245-281
    [14]
    Hickman, A.B., Perez, Z.N., Zhou, L. et al. Molecular architecture of a eukaryotic DNA transposase Nat. Struct. Mol. Biol., 12 (2005),pp. 715-721
    [15]
    Jurka, J., Bao, W. A distinct subgroup of Kolobok-type DNA transposons Repbase Rep., 8 (2008),p. 170
    [16]
    Jurka, J., Kapitonov, V.V., Pavlicek, A. et al. Repbase update, a database of eukaryotic repetitive elements Cytogenet. Genome Res., 110 (2005),pp. 462-467
    [17]
    Kapitonov, V.V., Jurka, J.
    [18]
    Kapitonov, V.V., Jurka, J.
    [19]
    Kapitonov, V.V., Jurka, J. Rolling-circle transposons in eukaryotes Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 8714-8719
    [20]
    Kapitonov, V.V., Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons PLoS Biol., 3 (2005),p. e181
    [21]
    Kapitonov, V.V., Jurka, J. Self-synthesizing DNA transposons in eukaryotes Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 4540-4545
    [22]
    Kapitonov, V.V., Jurka, J. Kolobok, a novel superfamily of eukaryotic DNA transposons Repbase Rep., 7 (2007),pp. 111-122
    [23]
    Kapitonov, V.V., Jurka, J. A universal classification of eukaryotic transposable elements implemented in Repbase Nat. Rev. Genet., 9 (2008),pp. 411-412
    [24]
    Mobile elements: drivers of genome evolution Science, 303 (2004),pp. 1626-1632
    [25]
    Kohany, O., Gentles, A.J., Hankus, L. et al. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor BMC Bioinf., 7 (2006),p. 474
    [26]
    Lander, E.S., Linton, L.M., Birren, B. et al. Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [27]
    Lisch, D. Mutator transposons Trends Plant Sci., 7 (2002),pp. 498-504
    [28]
    Lisch, D.R., Freeling, M., Langham, R.J. et al. Mutator transposase is widespread in the grasses Plant Physiol., 125 (2001),pp. 1293-1303
    [29]
    Pritham, E.J., Feschotte, C., Wessler, S.R. Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans Mol. Biol. Evol., 22 (2005),pp. 1751-1763
    [30]
    Rice, P.A., Baker, T.A. Comparative architecture of transposase and integrase complexes Nat. Struct. Biol., 8 (2001),pp. 302-307
    [31]
    Roy, S.W. The origin of recent introns: transposons? Genome Biol., 5 (2004),p. 251
    [32]
    Silva, J.C., Kidwell, M.G. Horizontal transfer and selection in the evolution of P elements Mol. Biol. Evol., 17 (2000),pp. 1542-1557
    [33]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),pp. 4673-4680
    [34]
    Vanacova, S., Yan, W., Carlton, J.M. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 4430-4435
    [35]
    Xu, Z., Yan, X., Maurais, S. et al. Jittery, a Mutator distant relative with a paradoxical mobile behavior: excision without reinsertion Plant Cell, 16 (2004),pp. 1105-1114
    [36]
    Yu, Z., Wright, S.I., Bureau, T.E. Genetics, 156 (2000),pp. 2019-2031
    [37]
    Zhou, L., Mitra, R., Atkinson, P.W. et al. Transposition of hAT elements links transposable elements and V(D)J recombination Nature, 432 (2004),pp. 995-1001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return