[1] |
Adler, C.E., Fetter, R.D., Bargmann, C.I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation Nat. Neurosci., 9 (2006),pp. 511-518
|
[2] |
Ainsley, J.A., Pettus, J.M., Bosenko, D. et al. Curr. Biol., 13 (2003),pp. 1557-1563
|
[3] |
Alexander, M., Selman, G., Seetharaman, A. et al. Dev. Cell, 18 (2010),pp. 961-972
|
[4] |
Aranda-Orgilles, B., Aigner, J., Kunath, M. et al. Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A PLoS ONE, 3 (2008),p. e3507
|
[5] |
Berti, C., Messali, S., Ballabio, A. et al. TRIM9 is specifically expressed in the embryonic and adult nervous system Mech. Dev., 113 (2002),pp. 159-162
|
[6] |
Brenner, S. Genetics, 77 (1974),pp. 71-94
|
[7] |
Buchner, G., Montini, E., Andolfi, G. et al. MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development Hum. Mol. Genet., 8 (1999),pp. 1397-1407
|
[8] |
Chan, S.S., Zheng, H., Su, M.W. et al. Cell, 87 (1996),pp. 187-195
|
[9] |
Chang, C., Adler, C.E., Krause, M. et al. MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin Curr. Biol., 16 (2006),pp. 854-862
|
[10] |
Colavita, A., Culotti, J.G. Dev. Biol., 194 (1998),pp. 72-85
|
[11] |
Dickson, B.J. Molecular mechanisms of axon guidance Science, 298 (2002),pp. 1959-1964
|
[12] |
Drinjakovic, J., Jung, H., Campbell, D.S. et al. E3 ligase Nedd4 promotes axon branching by downregulating PTEN Neuron, 65 (2010),pp. 341-357
|
[13] |
Gitai, Z., Yu, T.W., Lundquist, E.A. et al. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM Neuron, 37 (2003),pp. 53-65
|
[14] |
Grill, B., Bienvenut, W.V., Brown, H.M. et al. Neuron, 55 (2007),pp. 587-601
|
[15] |
Grueber, W.B., Ye, B., Moore, A.W. et al. Curr. Biol., 13 (2003),pp. 618-626
|
[16] |
Hao, J.C., Adler, C.E., Mebane, L. et al. The tripartite motif protein MADD-2 functions with the receptor UNC-40 (DCC) in Netrin-mediated axon attraction and branching Dev. Cell, 18 (2010),pp. 950-960
|
[17] |
Hedgecock, E.M., Culotti, J.G., Hall, D.H. Neuron, 4 (1990),pp. 61-85
|
[18] |
Hu, G., Zhang, S., Vidal, M. et al. Genes Dev., 11 (1997),pp. 2701-2714
|
[19] |
Huang, X., Cheng, H.J., Tessier-Lavigne, M. et al. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion Neuron, 34 (2002),pp. 563-576
|
[20] |
Huber, A.B., Kolodkin, A.L., Ginty, D.D. et al. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance Annu. Rev. Neurosci., 26 (2003),pp. 509-563
|
[21] |
Jia, L., Emmons, S.W. Genetics, 173 (2006),pp. 1241-1258
|
[22] |
Joazeiro, C.A., Weissman, A.M. RING finger proteins: mediators of ubiquitin ligase activity Cell, 102 (2000),pp. 549-552
|
[23] |
Kawabe, H., Neeb, A., Dimova, K. et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development Neuron, 65 (2010),pp. 358-372
|
[24] |
Lancioni, A., Pizzo, M., Fontanella, B. et al. Lack of Mid1, the mouse ortholog of the Opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis J. Neurosci., 30 (2010),pp. 2880-2887
|
[25] |
Leung-Hagesteijn, C., Spence, A.M., Stern, B.D. et al. Cell, 71 (1992),pp. 289-299
|
[26] |
Lewcock, J.W., Genoud, N., Lettieri, K. et al. The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics Neuron, 56 (2007),pp. 604-620
|
[27] |
Li, H., Kulkarni, G., Wadsworth, W.G. J. Neurosci., 28 (2008),pp. 3595-3603
|
[28] |
Li, Y., Chin, L.S., Weigel, C. et al. Spring, a novel RING finger protein that regulates synaptic vesicle exocytosis J. Biol. Chem., 276 (2001),pp. 40824-40833
|
[29] |
Meroni, G., Diez-Roux, G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases Bioessays, 27 (2005),pp. 1147-1157
|
[30] |
Nakata, K., Abrams, B., Grill, B. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development Cell, 120 (2005),pp. 407-420
|
[31] |
Ozato, K., Shin, D.M., Chang, T.H. et al. TRIM family proteins and their emerging roles in innate immunity Nat. Rev. Immunol., 8 (2008),pp. 849-860
|
[32] |
Quaderi, N.A., Schweiger, S., Gaudenz, K. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22 Nat. Genet., 17 (1997),pp. 285-291
|
[33] |
Quinn, C.C., Pfeil, D.S., Wadsworth, W.G. CED-10/Rac1 mediates axon guidance by regulating the asymmetric distribution of MIG-10/lamellipodin Curr. Biol., 18 (2008),pp. 808-813
|
[34] |
Quinn, C.C., Pfeil, D.S., Chen, E. et al. UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin Curr. Biol., 16 (2006),pp. 845-853
|
[35] |
Schweiger, S., Foerster, J., Lehmann, T. et al. The Opitz syndrome gene product, MID1, associates with microtubules Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 2794-2799
|
[36] |
Short, K.M., Cox, T.C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding J. Biol. Chem., 281 (2006),pp. 8970-8980
|
[37] |
Short, K.M., Hopwood, B., Yi, Z. et al. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders BMC Cell Biol., 3 (2002),p. 1
|
[38] |
Suzuki, M., Hara, Y., Takagi, C. et al. Development, 137 (2010),pp. 2329-2339
|
[39] |
Sze, J.Y., Zhang, S., Li, J. et al. Development, 129 (2002),pp. 3901-3911
|
[40] |
Tanji, K., Kamitani, T., Mori, F. et al. TRIM9, a novel brain-specific E3 ubiquitin ligase, is repressed in the brain of Parkinson’s disease and dementia with Lewy bodies Neurobiol. Dis., 38 (2010),pp. 210-218
|
[41] |
Tessier-Lavigne, M., Goodman, C.S. The molecular biology of axon guidance Science, 274 (1996),pp. 1123-1133
|
[42] |
Trockenbacher, A., Suckow, V., Foerster, J. et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation Nat. Genet., 29 (2001),pp. 287-294
|
[43] |
Zhen, M., Huang, X., Bamber, B. et al. Neuron, 26 (2000),pp. 331-343
|