5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 1
Jan.  2011
Turn off MathJax
Article Contents

Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning

doi: 10.1016/j.jcg.2010.12.003
More Information
  • Corresponding author: E-mail address: ytzeng@stn.sh.cn (Yitao Zeng)
  • Received Date: 2010-07-19
  • Accepted Date: 2010-10-21
  • Rev Recd Date: 2010-10-19
  • Available Online: 2011-02-19
  • Publish Date: 2011-01-20
  • Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast–cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.
  • loading
  • [1]
    Barnett, D.K., Kimura, J., Bavister, B.D. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy Dev. Dyn., 205 (1996),pp. 64-72
    [2]
    Betthauser, J.M., Pfister-Genskow, M., Xu, H. et al. Mol. Reprod. Dev., 73 (2006),pp. 977-986
    [3]
    Brown, D.R., Koehler, C.M., Lindberg, G.L. et al. Molecular analysis of cytoplasmic genetic variation in Holstein cows J. Anim. Sci., 67 (1989),pp. 1926-1932
    [4]
    Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells Cell, 113 (2003),pp. 643-655
    [5]
    Clark, S.J., Harrison, J., Paul, C.L. et al. High sensitivity mapping of methylated cytosines Nucleic Acids Res., 22 (1994),pp. 2990-2997
    [6]
    Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 13734-13738
    [7]
    Deng, W.P., Jiao, F., Huang, Y. Analysis on mitochondrial DNA polymorphism and phylogeny of Chinese Holstein cow and Luxi cattle J. Shanghai Jiaotong Univ. (Agri. Sci.), 26 (2008),pp. 520-527
    [8]
    Du, F., Sung, L.Y., Tian, X.C. et al. Differential cytoplast requirement for embryonic and somatic cell nuclear transfer in cattle Mol. Reprod. Dev., 63 (2002),pp. 183-191
    [9]
    Fu, J., Guan, P., Zhao, L. et al. J. Genet. Genomics, 35 (2008),pp. 273-278
    [10]
    Fujii, T., Moriyasu, S., Hirayama, H. et al. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer Cell Reprogram., 12 (2010),pp. 617-625
    [11]
    Gaulden, M.E. Maternal age effect: the enigma of Down syndrome and other trisomic conditions Mutat. Res., 296 (1992),pp. 69-88
    [12]
    Gu, P., Le Menuet, D., Chung, A.C.-K. et al. Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression Mol. Cell. Biol., 26 (2006),pp. 9471-9483
    [13]
    Hiendleder, S., Mund, C., Reichenbach, H.D. et al. Biol. Reprod., 71 (2004),pp. 217-223
    [14]
    Hochedlinger, K., Jaenisch, R. Nuclear reprogramming and pluripotency Nature, 441 (2006),pp. 1061-1067
    [15]
    Jiao, F., Yan, J.B., Yang, X.Y. et al. Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency Mol. Reprod. Dev., 74 (2007),pp. 1278-1286
    [16]
    Knott, J.G., Poothapillai, K., Wu, H. et al. Porcine sperm factor supports activation and development of bovine nuclear transfer embryos Biol. Reprod., 66 (2002),pp. 1095-1103
    [17]
    Li, E. Chromatin modification and epigenetic reprogramming in mammalian development Nat. Rev. Genet., 3 (2002),pp. 662-673
    [18]
    Liu, J., Liang, X., Zhu, J. et al. Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones J. Genet. Genomics, 35 (2008),pp. 559-568
    [19]
    Monteiro, F.M., Oliveira, C.S., Oliveira, L.Z. et al. Vet. Med. Int. (2010)
    [20]
    Ohgane, J., Aikawa, J.I., Ogura, A. et al. Analysis of CpG islands of trophoblast giant cells by restriction landmark genomic scanning Dev. Genet., 22 (1998),pp. 132-140
    [21]
    Park, S.H., Shin, M.R., Kim, N.H. Bovine oocyte cytoplasm supports nuclear remodeling but not reprogramming of murine fibroblast cells Mol. Reprod. Dev., 68 (2004),pp. 25-34
    [22]
    Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development Nature, 447 (2006),pp. 425-432
    [23]
    Santos, F., Zakhartchenko, V., Stojkovic, M. et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos Curr. Biol., 13 (2003),pp. 1116-1121
    [24]
    Shah, K.D., Maeda, T., Hidaka, T. et al. J. Reprod. Dev., 53 (2007),pp. 1237-1246
    [25]
    Smith, L.C., Thundathil, J., Filion, F. Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies Reprod. Fertil. Dev., 17 (2004),pp. 15-22
    [26]
    Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell, 126 (2006),pp. 663-676
    [27]
    Tveden-Nyborg, P.Y., Alexopoulos, N.I., Cooney, M.A. et al. Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos Theriogenology, 70 (2008),pp. 1119-1128
    [28]
    Wang, K., Beyhan, Z., Rodriguez, R.M. et al. Bovine ooplasm partially remodels primate somatic nuclei following somatic cell nuclear transfer Clon. Stem Cell, 11 (2009),pp. 187-202
    [29]
    Weigel, K.A., Barlass, K.A. Results of a producer survey regarding crossbreeding on US dairy farms J. Dairy Sci., 86 (2003),pp. 4148-4154
    [30]
    Wilmut, I., Beaujean, N., de Sousa, P.A. et al. Somatic cell nuclear transfer Nature, 419 (2002),pp. 583-586
    [31]
    Yang, X.Y., Li, H., Ma, Q.W. et al. Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer Reproduction, 132 (2006),pp. 733-739
    [32]
    Yang, X.Y., Zhao, J.G., Li, H.W. et al. Theriogenology, 64 (2005),pp. 1263-1272
    [33]
    Yan, Z.H., Zhou, Y.Y., Fu, J. et al. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer BMC Dev. Biol., 19 (2010),pp. 10-31
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return