[1] |
Altschul, S.F., Madden, T.L., Schaffer, A.A. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res., 25 (1997),pp. 3389-3402
|
[2] |
Alvarez, V., Coto, E., Setien, F. et al. Molecular evolution of the N-formyl peptide and C5a receptors in non-human primates Immunogenetics, 44 (1996),pp. 446-452
|
[3] |
Bhatnagar, K.P., Meisami, E. Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications Microsc. Res. Tech., 43 (1998),pp. 465-475
|
[4] |
Boulay, F., Tardif, M., Brouchon, L. et al. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors Biochemistry, 29 (1990),pp. 11123-11133
|
[5] |
Devosse, T., Guillabert, A., D'Haene, N. et al. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils J. Immunol., 182 (2009),pp. 4974-4984
|
[6] |
Dulac, C., Axel, R. A novel family of genes encoding putative pheromone receptors in mammals Cell, 83 (1995),pp. 195-206
|
[7] |
Durstin, M., Gao, J.L., Tiffany, H.L. et al. Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes Biochem. Biophys. Res. Commun., 201 (1994),pp. 174-179
|
[8] |
Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap Evolution, 39 (1985),pp. 783-791
|
[9] |
Gao, J.L., Chen, H., Filie, J.D. et al. Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse Genomics, 51 (1998),pp. 270-276
|
[10] |
Grus, W.E., Shi, P., Zhang, Y.P. et al. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 5767-5772
|
[11] |
Grus, W.E., Shi, P., Zhang, J. Largest vertebrate vomero-nasal type 1 receptor gene repertoire in the semiaquatic platypus Mol. Biol. Evol., 24 (2007),pp. 2153-2157
|
[12] |
Gu, X. Statistical methods for testing functional divergence after gene duplication Mol. Biol. Evol., 16 (1999),pp. 1664-1674
|
[13] |
Herrada, G., Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution Cell, 90 (1997),pp. 763-773
|
[14] |
Le, Y., Murphy, P.M., Wang, J.M. Formyl-peptide receptors revisited Trends Immunol., 23 (2002),pp. 541-548
|
[15] |
Liberles, S.D., Horowitz, L.F., Kuang, D. et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9842-9847
|
[16] |
Matsunami, H., Buck, L.B. A multigene family encoding a diverse array of putative pheromone receptors in mammals Cell, 90 (1997),pp. 775-784
|
[17] |
Migeotte, I., Communi, D., Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses Cytokine Growth Factor Rev., 17 (2006),pp. 501-519
|
[18] |
Migeotte, I., Riboldi, E., Franssen, J.D. et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2 J. Exp. Med., 201 (2005),pp. 83-93
|
[19] |
Murphy, P.M., Ozcelik, T., Kenney, R.T. et al. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family J. Biol. Chem., 267 (1992),pp. 7637-7643
|
[20] |
Riviere, S., Challet, L., Fluegge, D. et al. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors Nature, 459 (2009),pp. 574-577
|
[21] |
Ryba, N.J., Tirindelli, R. A new multigene family of putative pheromone receptors Neuron, 19 (1997),pp. 371-379
|
[22] |
Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
|
[23] |
Schilling, A., Serviere, J., Gendrot, G. et al. Vomeronasal activation by urine in the primate Microcebus murinus: a 2 DG study Exp. Brain Res., 81 (1990),pp. 609-618
|
[24] |
Shi, P., Bielawski, J.P., Yang, H. et al. Adaptive diversification of vomeronasal receptor 1 genes in rodents J. Mol. Evol., 60 (2005),pp. 566-576
|
[25] |
Shi, P., Zhang, J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land Genome Res., 17 (2007),pp. 166-174
|
[26] |
Shi, P., Zhang, J.
|
[27] |
Smith, T.D., Bhatnagar, K.P., Burrows, A.M. et al. J. Neurocytol., 34 (2005),pp. 135-147
|
[28] |
Takigami, S., Mori, Y., Tanioka, Y. et al. Morphological evidence for two types of Mammalian vomeronasal system Chem. Senses, 29 (2004),pp. 301-310
|
[29] |
Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
|
[30] |
Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2002). Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2: Unit 2.3.
|
[31] |
Wang, G., Shi, P., Zhu, Z. et al. More functional V1R genes occur in nest-living and nocturnal terricolous mammals Genome Biol. Evol., 2 (2010),pp. 277-283
|
[32] |
Yang, H., Shi, P., Zhang, Y.P. et al. Genomics, 86 (2005),pp. 306-315
|
[33] |
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
|
[34] |
Ye, R.D., Boulay, F., Wang, J.M. et al. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family Pharmacol. Rev., 61 (2009),pp. 119-161
|
[35] |
Young, J.M., Massa, H.F., Hsu, L. et al. Genome Res., 20 (2010),pp. 10-18
|
[36] |
Zhang, J., Webb, D.M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8337-8341
|