5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 11
Nov.  2010
Turn off MathJax
Article Contents

Genome-wide transcriptional analysis of maize endosperm in response to ae wx double mutations

doi: 10.1016/S1673-8527(09)60092-8
More Information
  • Corresponding author: E-mail address: zhangxs@sdau.edu.cn (Xiansheng Zhang)
  • Received Date: 2010-02-03
  • Accepted Date: 2010-09-14
  • Rev Recd Date: 2010-08-25
  • Available Online: 2010-11-27
  • Publish Date: 2010-11-20
  • Starch biosynthesis is important during endosperm development. Much has been known for the regulation of gene expression involved in starch synthesis, less information is available on the genome-wide expression profiles as a consequence of impaired starch synthesis. In this study, we examined the transcriptional responses through microarray analysis in an ae wx double-mutant with loss-of-function starch branching enzyme IIb (SBEIIb) and granule-bound starch synthase I (GBSSI). Through Gene Ontology enrichment analysis, we identified differentially expressed genes (DEGs) involved in chromatin organization and lipid transport. The DEGs also include alcohol dehydrogenase genes and pyruvate decarboxylase genes involved in sugar metabolism. In summary, the ae wx double mutations caused pleiotropic effects and transcriptional changes for a number of genes involved in metabolism, cellular response and organization. Therefore, a block in starch synthesis triggers transcriptional responses to favour the flux of excess carbohydrates into glycolysis, pentose phosphate pathway, and cell wall biosynthesis, but not toward the synthesis of alternative storage compounds.
  • loading
  • [1]
    Azevedo, R.A., Lancien, M., Lea, P.J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants Amino Acids, 30 (2006),pp. 143-162
    [2]
    Bae, J.M., Giroux, M., Hannah, L.C. Cloning and molecular characterization of the brittle-2 gene of maize Maydica, 35 (1990),pp. 317-322
    [3]
    Ball, S., Guan, H.P., James, M. et al. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule Cell, 86 (1996),pp. 349-352
    [4]
    Bhave, M.R., Lawrence, S., Barton, C. et al. Identification and molecular characterization of shrunken-2 cDNA clones of maize Plant Cell, 2 (1990),pp. 581-588
    [5]
    Blauth, S.L., Yao, Y., Klucinec, J.D. et al. Identification of mutator insertional mutants of starch-branching enzyme 2a in corn Plant Physiol., 125 (2001),pp. 1396-1405
    [6]
    Cobb, B.G., Hannah, L.C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm Plant Physiol., 88 (1988),pp. 1219-1221
    [7]
    Cossegal, M., Chambrier, P., Mbelo, S. et al. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels Plant Physiol., 146 (2008),pp. 1553-1570
    [8]
    Creech, R.G. Genetic control of carbohydrate synthesis in maize endosperm Genetics, 52 (1965),pp. 1175-1186
    [9]
    Dhugga, K.S. Plant Golgi cell wall synthesis: from genes to enzyme activities Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 1815-1816
    [10]
    Eisen, M.B., Spellman, P.T., Brown, P.O. et al. Cluster analysis and display of genome-wide expression patterns Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 14863-14868
    [11]
    Fujita, N., Yoshida, M., Asakura, N. et al. Function and characterization of starch synthase I using mutants in rice Plant Physiol., 140 (2006),pp. 1070-1084
    [12]
    Gao, M., Wanat, J., Stinard, P.S. et al. Plant Cell, 10 (1998),pp. 399-412
    [13]
    Goudsmit, E.M., Neufeld, E.F. Formation of GDP-L-galactose from GDP-D-mannose Biochem. Biophys. Res. Commun., 26 (1967),pp. 730-735
    [14]
    Grimaud, F., Rogniaux, H., James, M.G. et al. Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis J. Exp. Bot., 59 (2008),pp. 3395-3406
    [15]
    Hannah, L.C., Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize Biochem. Genet., 14 (1976),pp. 547-560
    [16]
    Hannah, L.C., James, M. The complexities of starch biosynthesis in cereal endosperms Curr. Opin. Biotechnol., 19 (2008),pp. 160-165
    [17]
    Hecht, A., Laroche, T., Strahl-Bolsinger, S. et al. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast Cell, 80 (1995),pp. 583-592
    [18]
    Hennen-Bierwagen, T.A., Lin, Q., Grimaud, F. et al. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts Plant Physiol., 149 (2009),pp. 1541-1559
    [19]
    Hennen-Bierwagen, T.A., Liu, F., Marsh, R.S. et al. Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes Plant Physiol., 146 (2008),pp. 1892-1908
    [20]
    James, M.G., Robertson, D.S., Myers, A.M. Plant Cell, 7 (1995),pp. 417-429
    [21]
    James, M.G., Denyer, K., Myers, A.M. Starch synthesis in the cereal endosperm Curr. Opin. Plant Biol., 6 (2003),pp. 215-222
    [22]
    Kim, J.Y., Mahe, A., Guy, S. et al. Gene, 245 (2000),pp. 89-102
    [23]
    Kim, K.N., Fisher, D.K., Gao, M. et al. Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize Plant Mol. Biol., 38 (1998),pp. 945-956
    [24]
    Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development Curr. Opin. Plant Biol., 7 (2004),pp. 235-246
    [25]
    Kolbe, A., Tiessen, A., Schluepmann, H. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11118-11123
    [26]
    Less, H., Galili, G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses Plant Physiol., 147 (2008),pp. 316-330
    [27]
    Li, M., Xu, W., Yang, W. et al. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice Plant Physiol., 144 (2007),pp. 1797-1812
    [28]
    Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods, 25 (2001),pp. 402-408
    [29]
    Lusser, A., Brosch, G., Loidl, A. et al. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein Science, 277 (1997),pp. 88-91
    [30]
    Ma, J., Morrow, D.J., Fernandes, J. et al. Comparative profiling of the sense and antisense transcriptome of maize lines Genome Biol., 7 (2006),p. R22
    [31]
    Maddelein, M.L., Libessart, N., Bellanger, F. et al. Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis J. Biol. Chem., 269 (1994),pp. 25150-25157
    [32]
    Myers, A.M., Morell, M.K., James, M.G. et al. Recent progress toward understanding biosynthesis of the amylopectin crystal Plant Physiol., 122 (2000),pp. 989-997
    [33]
    Nelson, O.E., Rines, H.W. Biochem. Biophys. Res. Commun., 9 (1962),pp. 297-300
    [34]
    Nishi, A., Nakamura, Y., Tanaka, N. et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm Plant Physiol., 127 (2001),pp. 459-472
    [35]
    Paul, M. Trehalose 6-phosphate Curr. Opin. Plant Biol., 10 (2007),pp. 303-309
    [36]
    Ral, J.P., Colleoni, C., Wattebled, F. et al. Plant Physiol., 142 (2006),pp. 305-317
    [37]
    Schlupmann, H., Bacic, A., Read, S.M. Plant Physiol., 105 (1994),pp. 659-670
    [38]
    Shannon, J.C., Pien, F.M., Cao, H. et al. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP–glucose into amyloplasts of maize endosperms Plant Physiol., 117 (1998),pp. 1235-1252
    [39]
    Somerville, C. Cellulose synthesis in higher plants Annu. Rev. Cell Dev. Biol., 22 (2006),pp. 53-78
    [40]
    Stepansky, A., Leustek, T. Histidine biosynthesis in plants Amino Acids, 30 (2006),pp. 127-142
    [41]
    Stinard, P.S., Robertson, D.S., Schnable, P.S. Plant Cell, 5 (1993),pp. 1555-1566
    [42]
    Stupar, R.M., Hermanson, P.J., Springer, N.M. Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm Plant Physiol., 145 (2007),pp. 411-425
    [43]
    Tetlow, I.J., Morell, M.K., Emes, M.J. Recent developments in understanding the regulation of starch metabolism in higher plants J. Exp. Bot., 55 (2004),pp. 2131-2145
    [44]
    Tetlow, I.J., Wait, R., Lu, Z. et al. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions Plant Cell, 16 (2004),pp. 694-708
    [45]
    van de Wal, M., D'Hulst, C., Vincken, J.P. et al. J. Biol. Chem., 273 (1998),pp. 22232-22240
    [46]
    Warner, J.R., McIntosh, K.B. How common are extraribosomal functions of ribosomal proteins? Mol. Cell, 34 (2009),pp. 3-11
    [47]
    Wolffe, A.P. Histone H1 Int. J. Biochem. Cell Biol., 29 (1997),pp. 1463-1466
    [48]
    Yamasaki, M., Yamada, K., Furuya, S. et al. 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain J. Neurosci., 21 (2001),pp. 7691-7704
    [49]
    Yao, Y., Thompson, D.B., Guiltinan, M.J. Maize starch-branching enzyme isoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching Plant Physiol., 136 (2004),pp. 3515-3523
    [50]
    Zhang, X., Colleoni, C., Ratushna, V. et al. Plant Mol. Biol., 54 (2004),pp. 865-879
    [51]
    Zheng, L., Watson, C.F., DellaPenna, D. Differential expression of the two subunits of tomato polygalacturonase isoenzyme 1 in wild-type and rin tomato fruit Plant Physiol., 105 (1994),pp. 1189-1195
    [52]
    Zheng, Q., Wang, X.J. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis Nucleic Acids Res., 36 (2008),pp. W358-W363
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return