5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 11
Nov.  2010

Djrho2 is involved in regeneration of visual nerves in Dugesia japonica

doi: 10.1016/S1673-8527(09)60089-8
More Information
  • Corresponding author: E-mail address: wwu@mail.tsinghua.edu.cn (Wei Wu)
  • Received Date: 2010-05-23
  • Accepted Date: 2010-07-02
  • Rev Recd Date: 2010-06-27
  • Available Online: 2010-11-27
  • Publish Date: 2010-11-20
  • The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo. During regeneration, stem cells (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body. However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively. Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1). In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vascular system. Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation. In Djrho2-RNAi planarians, smaller anterior blastemas were observed in tail fragments during regeneration. Consistently, defective regeneration of visual nerve was detected by immunostainning with VC-1 antibody. These results suggested that Djrho2 is required for proper anterior regeneration in planairan. In contrast, no abnormality was observed after RNAi ofDjrho3. We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach. Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional electrophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis. Among them, 6 actin-binding or cytoskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.
  • These authors contributed equally to this work.
  • [1]
    Banks, R., Dunn, M., Hochstrasser, D. et al. Proteomics: new perspectives, new biomedical opportunities Lancet, 356 (2000),pp. 1749-1756
    [2]
    Brenner, S., Korn, E. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin J. Biol. Chem., 254 (1979),pp. 8620-8627
    [3]
    Cappello, S., Attardo, A., Wu, X. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface Nat. Neurosci., 9 (2006),pp. 1099-1107
    [4]
    Candiano, G., Bruschi, M., Musante, L. et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis Electrophoresis, 25 (2004),pp. 1327-1333
    [5]
    Cebrià, F., Kobayashi, C., Umesono, Y. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians Nature, 419 (2002),pp. 620-624
    [6]
    Cebrià, F., Guo, T., Jopek, J. et al. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue Dev. Biol., 307 (2007),pp. 394-406
    [7]
    Chai, G., Ma, C., Bao, K. et al. Complete functional segregation of planarian β-catenin-1 and -2 in mediating Wnt singaling and cell adhension J. Biol. Chem., 285 (2010),pp. 24120-24130
    [8]
    Collet, J., Bagunà, J. Optimizing a method of protein extraction for two-dimensional electrophoretic separation of proteins from planarians (Platyhelminthes, Turbellaria) Electrophoresis, 14 (1993),pp. 1054-1059
    [9]
    Etienne-Manneville, S., Hall, A. Rho GTPases in cell biology Nature, 420 (2002),pp. 629-635
    [10]
    Fernandéz-Taboada, E., Moritz, S., Zeuschner, D. et al. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation Development, 137 (2010),pp. 1055-1065
    [11]
    Gao, Y., Xiong, W., Li, X.B. et al. J. Exp. Bot., 60 (2009),pp. 1141-1154
    [12]
    Halliday, G.M., Bock, V.L., Moloney, F.J. et al. SWI/SNF: a chromatin-remodelling complex with a role in carcinogenesis Int. J. Biochem. Cell Biol., 41 (2009),pp. 725-728
    [13]
    Iglesias, M., Gomez-Skarmeta, J.L., Saló, E. et al. Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians Development, 135 (2008),pp. 1215-1221
    [14]
    Inoue, T., Kumamoto, H., Okamoto, K. et al. Morphological and functional recovery of the planarian photosensing system during head regeneration Zoolog. Sci., 21 (2004),pp. 275-283
    [15]
    Jaffe, A., Hall, A. Rho GTPases in transformation and metastasis Adv Cancer Res., 84 (2002),pp. 57-80
    [16]
    Ma, C.X., Wang, X.A., Yu, S.Z. et al. J. Genet. Genomics, 37 (2010),pp. 621-635
    [17]
    Machesky, L., Gould, K. The Arp2/3 complex: a multifunctional actin organizer Curr. Opin. Cell Biol., 11 (1999),pp. 117-121
    [18]
    Milisav, I. Dynein and dynein-related genes Cell Motil. Cytoskeleton, 39 (1998),pp. 261-272
    [19]
    Murphy, T.M., Perry, A.S., Lawler, M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer Endocr. Relat. Cancer, 15 (2008),pp. 11-25
    [20]
    Newmark, P., Alvarado, A.S. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians Dev. Biol., 220 (2000),pp. 142-153
    [21]
    Newmark, P., Alvarado, A.S. Not your father's planarian: a classic model enters the era of functional genomics Nat. Rev. Genet., 3 (2002),pp. 210-219
    [22]
    Otey, C., Pavalko, F., Burridge, K. J. Cell Biol., 111 (1990),pp. 721-729
    [23]
    Petersen, C., Reddien, P. A wound-induced Wnt expression program controls planarian regeneration polarity Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 17061-17066
    [24]
    Petersen, C., Reddien, P. Wnt signaling and the polarity of the primary body axis Cell, 139 (2009),pp. 1056-1068
    [25]
    Reddien, P., Alvarado, A.S. Fundamentals of planarian regeneration Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 725-757
    [26]
    Reddien, P., Bermange, A., Murfitt, K. et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria Dev. Cell, 8 (2005),pp. 635-649
    [27]
    Ren, R., Nagel, M., Tahinci, E. et al. Dev. Dyn., 235 (2006),pp. 1090-1099
    [28]
    Rebbapragada, I., Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol., 21 (2009),pp. 394-402
    [29]
    Rossi, L., Salvetti, A., Marincola, F. et al. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile Genome Biol., 8 (2007),p. R62
    [30]
    Ridley, A. Rho GTPases and cell migration J. Cell Sci., 114 (2001),pp. 2713-2722
    [31]
    Ridley, A. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking Trends Cell Biol., 16 (2006),pp. 522-529
    [32]
    Sahai, E., Marshall, C. RHO–GTPases and cancer Nat. Rev. Cancer, 2 (2002),pp. 133-142
    [33]
    Saló, E., Abril, J.F., Adell, T. et al. Planarian regeneration: achievements and future directions after 20 years of research Cell Differ. Dev., 53 (2009),pp. 1317-1327
    [34]
    Salvetti, A., Rossi, L., Deri, P. et al. An MCM 2-related gene is expressed in proliferating cells of intact and regenerating planarians Dev. Dyn., 218 (2000),pp. 603-614
    [35]
    Scimone, M., Meisel, J., Reddien, P. Development, 8 (2010),pp. 1231-1241
    [36]
    Shapland, C., Hsuan, J., Totty, N. et al. Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein J. Cell Biol., 121 (1993),pp. 1065-1073
    [37]
    Umesono, Y., Watanabe, K., Agata, K. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain Dev. Growth Differ., 39 (1997),pp. 723-727
    [38]
    Wang, J., Morris, A.J., Tolan, D.R. et al. The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants J. Biol. Chem., 271 (1996),pp. 6861-6865
    [39]
    Wang, Y., Fu, Y., Gao, L. et al. J. Biol. Chem., 285 (2010),pp. 10890-10901
    [40]
    Yang, F.C., Atkinson, S.J., Gu, Y. et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5614-5618
  • Relative Articles

    [1]Xiu Zhou, Guangming Gan, Yichen Sun, Mengzhu Ou, Junhua Geng, Jing Wang, Xi Yang, Shu Huang, Da Jia, Wei Xie, Haihuai He. GTPase-activating protein TBC1D5 coordinates with retromer to constrain synaptic growth by inhibiting BMP signaling[J]. Journal of Genetics and Genomics, 2023, 50(3): 163-177. doi: 10.1016/j.jgg.2022.11.009
    [2]Yu Luo, Wei Liu, Juan Sun, Zheng-Rong Zhang, Wei-Cai Yang. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome[J]. Journal of Genetics and Genomics, 2023, 50(1): 7-19. doi: 10.1016/j.jgg.2022.04.004
    [3]Baijie Jin, Nannan Li, Lina Pang, Jing Xiao, Ziyi Lin, Ning Li, Zimei Dong, Guangwen Chen, Fei Yu, Dezeng Liu. Systematic identification and screening of functional lncRNAs during planarian regeneration[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.003
    [4]Shunqi Pei, Xuehui Wang, Xuan Wang, Hao Huang, Huaping Tao, Binghua Xie, Aifen Yang, Mengsheng Qiu, Zhou Tan. Aberrant nuclear lamina contributes to the malignancy of human gliomas[J]. Journal of Genetics and Genomics, 2022, 49(2): 132-144. doi: 10.1016/j.jgg.2021.08.013
    [5]Jinlong Wang, Xiahe Huang, Haitao Ge, Yan Wang, Weiyang Chen, Limin Zheng, Chengcheng Huang, Haomeng Yang, Lingyu Li, Na Sui, Yu Wang, Yuanya Zhang, Dandan Lu, Longfa Fang, Wu Xu, Yuqiang Jiang, Fang Huang, Yingchun Wang. The quantitative proteome atlas of a model cyanobacterium[J]. Journal of Genetics and Genomics, 2022, 49(2): 96-108. doi: 10.1016/j.jgg.2021.09.007
    [6]Yuan Gao, Ying Mao, Rong-Gang Xu, Ruibao Zhu, Ming Zhang, Jin Sun, Da Shen, Ping Peng, Ting Xie, Jian-Quan Ni. Defining gene networks controlling the maintenance and function of the differentiation niche by an in vivo systematic RNAi screen[J]. Journal of Genetics and Genomics, 2019, 46(1): 19-30. doi: 10.1016/j.jgg.2018.10.008
    [7]Xiaotong Zhu, Yangli Liu, Hong Zhang, Pingsheng Liu. Whole-genome RNAi screen identifies methylation-related genes influencing lipid metabolism in Caenorhabditis elegans[J]. Journal of Genetics and Genomics, 2018, 45(5): 259-272. doi: 10.1016/j.jgg.2018.03.005
    [8]Hua Gao, Mai Yang, Haitao Yang, Yue Qin, Biyun Zhu, Gang Xu, Chengyuan Xie, Dewei Wu, Xiaolin Zhang, Wanxiang Li, Jianbin Yan, Susheng Song, Tiancong Qi, Shou-Wei Ding, Daoxin Xie. Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense[J]. Journal of Genetics and Genomics, 2018, 45(1): 33-40. doi: 10.1016/j.jgg.2017.11.005
    [9]Azali Azlan, Najat Dzaki, Ghows Azzam. Argonaute: The executor of small RNA function[J]. Journal of Genetics and Genomics, 2016, 43(8): 481-494. doi: 10.1016/j.jgg.2016.06.002
    [10]Qiong Zhao, Caiji Gao, PoShing Lee, Lin Liu, Shaofang Li, Tangjin Hu, Jinbo Shen, Shuying Pan, Hao Ye, Yunru Chen, Wenhan Cao, Yong Cui, Peng Zeng, Sheng Yu, Yangbin Gao, Liang Chen, Beixin Mo, Xin Liu, Shi Xiao, Yunde Zhao, Silin Zhong, Xuemei Chen, Liwen Jiang. Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants[J]. Journal of Genetics and Genomics, 2015, 42(6): 319-330. doi: 10.1016/j.jgg.2015.03.012
    [11]Zhihui Yuan, Li Wang, Shutao Sun, Yao Wu, Wei Qian. Genetic and Proteomic Analyses of a Xanthomonas campestris pv. campestris purC Mutant Deficient in Purine Biosynthesis and Virulence[J]. Journal of Genetics and Genomics, 2013, 40(9): 473-487. doi: 10.1016/j.jgg.2013.05.003
    [12]Xuezhu Feng, Shouhong Guang. Small RNAs, RNAi and the Inheritance of Gene Silencing in Caenorhabditis elegans[J]. Journal of Genetics and Genomics, 2013, 40(4): 153-160. doi: 10.1016/j.jgg.2012.12.007
    [13]Wen Dui, Wei Lu, Jun Ma, Renjie Jiao. A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila[J]. Journal of Genetics and Genomics, 2012, 39(8): 397-413. doi: 10.1016/j.jgg.2012.05.009
    [14]Jing Li, Jue Wang, Hong Jiao, Ji Liao, Xingzhi Xu. Cytokinesis and cancer: Polo loves ROCK‘n’ Rho(A)[J]. Journal of Genetics and Genomics, 2010, 37(3): 159-172. doi: 10.1016/S1673-8527(09)60034-5
    [15]Fang Kong, Cailin Ge, Xiaoping Fang, Rod J. Snowdon, Youping Wang. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes[J]. Journal of Genetics and Genomics, 2010, 37(5): 333-340. doi: 10.1016/S1673-8527(09)60051-5
    [16]Changxin Ma, Xiaoan Wang, Shuizhou Yu, Guoliang Chai, Hanxia Su, Liang Zheng, Wei Wu. A small scale expression screen identifies tissue specific markers in the Dugesia japonica strain Pek-1[J]. Journal of Genetics and Genomics, 2010, 37(9): 621-635. doi: 10.1016/S1673-8527(09)60081-3
    [17]Yanfei Ren, Jun Lv, Hua Wang, Linchuan Li, Yufa Peng, Li-Jia Qu. A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis[J]. Journal of Genetics and Genomics, 2009, 36(10): 629-639. doi: 10.1016/S1673-8527(08)60155-1
    [18]Fengjian Chen, Xunping Jiang, Xiuping Chen, Guiqiong Liu, Jiatong Ding. Effects of Downregulation of Inhibin α Gene Expression on Apoptosis and Proliferation of Goose Granulosa Cells[J]. Journal of Genetics and Genomics, 2007, 34(12): 1106-1113. doi: 10.1016/S1673-8527(07)60126-X
    [19]Changjie Yan, Song Yan, Xiuhong Zeng, Zhengqiu Zhang, Minghong Gu. Fine Mapping and Isolation of Bc7(t), Allelic to OsCesA4[J]. Journal of Genetics and Genomics, 2007, 34(11): 1019-1027. doi: 10.1016/S1673-8527(07)60115-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return