5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 11
Nov.  2010
Turn off MathJax
Article Contents

Djrho2 is involved in regeneration of visual nerves in Dugesia japonica

doi: 10.1016/S1673-8527(09)60089-8
More Information
  • Corresponding author: E-mail address: wwu@mail.tsinghua.edu.cn (Wei Wu)
  • Received Date: 2010-05-23
  • Accepted Date: 2010-07-02
  • Rev Recd Date: 2010-06-27
  • Available Online: 2010-11-27
  • Publish Date: 2010-11-20
  • The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo. During regeneration, stem cells (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body. However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively. Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1). In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vascular system. Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation. In Djrho2-RNAi planarians, smaller anterior blastemas were observed in tail fragments during regeneration. Consistently, defective regeneration of visual nerve was detected by immunostainning with VC-1 antibody. These results suggested that Djrho2 is required for proper anterior regeneration in planairan. In contrast, no abnormality was observed after RNAi ofDjrho3. We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach. Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional electrophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis. Among them, 6 actin-binding or cytoskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Banks, R., Dunn, M., Hochstrasser, D. et al. Proteomics: new perspectives, new biomedical opportunities Lancet, 356 (2000),pp. 1749-1756
    [2]
    Brenner, S., Korn, E. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin J. Biol. Chem., 254 (1979),pp. 8620-8627
    [3]
    Cappello, S., Attardo, A., Wu, X. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface Nat. Neurosci., 9 (2006),pp. 1099-1107
    [4]
    Candiano, G., Bruschi, M., Musante, L. et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis Electrophoresis, 25 (2004),pp. 1327-1333
    [5]
    Cebrià, F., Kobayashi, C., Umesono, Y. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians Nature, 419 (2002),pp. 620-624
    [6]
    Cebrià, F., Guo, T., Jopek, J. et al. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue Dev. Biol., 307 (2007),pp. 394-406
    [7]
    Chai, G., Ma, C., Bao, K. et al. Complete functional segregation of planarian β-catenin-1 and -2 in mediating Wnt singaling and cell adhension J. Biol. Chem., 285 (2010),pp. 24120-24130
    [8]
    Collet, J., Bagunà, J. Optimizing a method of protein extraction for two-dimensional electrophoretic separation of proteins from planarians (Platyhelminthes, Turbellaria) Electrophoresis, 14 (1993),pp. 1054-1059
    [9]
    Etienne-Manneville, S., Hall, A. Rho GTPases in cell biology Nature, 420 (2002),pp. 629-635
    [10]
    Fernandéz-Taboada, E., Moritz, S., Zeuschner, D. et al. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation Development, 137 (2010),pp. 1055-1065
    [11]
    Gao, Y., Xiong, W., Li, X.B. et al. J. Exp. Bot., 60 (2009),pp. 1141-1154
    [12]
    Halliday, G.M., Bock, V.L., Moloney, F.J. et al. SWI/SNF: a chromatin-remodelling complex with a role in carcinogenesis Int. J. Biochem. Cell Biol., 41 (2009),pp. 725-728
    [13]
    Iglesias, M., Gomez-Skarmeta, J.L., Saló, E. et al. Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians Development, 135 (2008),pp. 1215-1221
    [14]
    Inoue, T., Kumamoto, H., Okamoto, K. et al. Morphological and functional recovery of the planarian photosensing system during head regeneration Zoolog. Sci., 21 (2004),pp. 275-283
    [15]
    Jaffe, A., Hall, A. Rho GTPases in transformation and metastasis Adv Cancer Res., 84 (2002),pp. 57-80
    [16]
    Ma, C.X., Wang, X.A., Yu, S.Z. et al. J. Genet. Genomics, 37 (2010),pp. 621-635
    [17]
    Machesky, L., Gould, K. The Arp2/3 complex: a multifunctional actin organizer Curr. Opin. Cell Biol., 11 (1999),pp. 117-121
    [18]
    Milisav, I. Dynein and dynein-related genes Cell Motil. Cytoskeleton, 39 (1998),pp. 261-272
    [19]
    Murphy, T.M., Perry, A.S., Lawler, M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer Endocr. Relat. Cancer, 15 (2008),pp. 11-25
    [20]
    Newmark, P., Alvarado, A.S. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians Dev. Biol., 220 (2000),pp. 142-153
    [21]
    Newmark, P., Alvarado, A.S. Not your father's planarian: a classic model enters the era of functional genomics Nat. Rev. Genet., 3 (2002),pp. 210-219
    [22]
    Otey, C., Pavalko, F., Burridge, K. J. Cell Biol., 111 (1990),pp. 721-729
    [23]
    Petersen, C., Reddien, P. A wound-induced Wnt expression program controls planarian regeneration polarity Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 17061-17066
    [24]
    Petersen, C., Reddien, P. Wnt signaling and the polarity of the primary body axis Cell, 139 (2009),pp. 1056-1068
    [25]
    Reddien, P., Alvarado, A.S. Fundamentals of planarian regeneration Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 725-757
    [26]
    Reddien, P., Bermange, A., Murfitt, K. et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria Dev. Cell, 8 (2005),pp. 635-649
    [27]
    Ren, R., Nagel, M., Tahinci, E. et al. Dev. Dyn., 235 (2006),pp. 1090-1099
    [28]
    Rebbapragada, I., Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol., 21 (2009),pp. 394-402
    [29]
    Rossi, L., Salvetti, A., Marincola, F. et al. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile Genome Biol., 8 (2007),p. R62
    [30]
    Ridley, A. Rho GTPases and cell migration J. Cell Sci., 114 (2001),pp. 2713-2722
    [31]
    Ridley, A. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking Trends Cell Biol., 16 (2006),pp. 522-529
    [32]
    Sahai, E., Marshall, C. RHO–GTPases and cancer Nat. Rev. Cancer, 2 (2002),pp. 133-142
    [33]
    Saló, E., Abril, J.F., Adell, T. et al. Planarian regeneration: achievements and future directions after 20 years of research Cell Differ. Dev., 53 (2009),pp. 1317-1327
    [34]
    Salvetti, A., Rossi, L., Deri, P. et al. An MCM 2-related gene is expressed in proliferating cells of intact and regenerating planarians Dev. Dyn., 218 (2000),pp. 603-614
    [35]
    Scimone, M., Meisel, J., Reddien, P. Development, 8 (2010),pp. 1231-1241
    [36]
    Shapland, C., Hsuan, J., Totty, N. et al. Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein J. Cell Biol., 121 (1993),pp. 1065-1073
    [37]
    Umesono, Y., Watanabe, K., Agata, K. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain Dev. Growth Differ., 39 (1997),pp. 723-727
    [38]
    Wang, J., Morris, A.J., Tolan, D.R. et al. The molecular nature of the F-actin binding activity of aldolase revealed with site-directed mutants J. Biol. Chem., 271 (1996),pp. 6861-6865
    [39]
    Wang, Y., Fu, Y., Gao, L. et al. J. Biol. Chem., 285 (2010),pp. 10890-10901
    [40]
    Yang, F.C., Atkinson, S.J., Gu, Y. et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5614-5618
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return