5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 9
Sep.  2010
Turn off MathJax
Article Contents

A small scale expression screen identifies tissue specific markers in the Dugesia japonica strain Pek-1

doi: 10.1016/S1673-8527(09)60081-3
More Information
  • Corresponding author: E-mail address: wwu@mail.tsinghua.edu.cn (Wei Wu)
  • Received Date: 2010-03-04
  • Accepted Date: 2010-04-27
  • Rev Recd Date: 2010-04-23
  • Available Online: 2010-10-07
  • Publish Date: 2010-09-20
  • Freshwater planaria has tremendous capacity to reform the missing part of the body and therefore is considered as one of the most important model organism for regeneration study. At present,Schmidtea mediterranea and Dugesia japonica are the two major species utilized for laboratory manipulations. Dugesia japonica flatworms are widely distributed in the Far East including Cherry Valley region in the north-west area of Beijing, China. We reported here the establishment of an asexual Dugesia japonica strain Pek-1, as a suitable system for regeneration study. Using morphological, karyotypical as well as phylogenetic analyses, we confirmed that these flatworms indeed belonged to Dugesia japonica. We went on to show that the commonly used in situ probes and immunohistochemistry reagents and protocols were applicable to the Pek-1 strain. Using this strain, we carried out small scale analysis on EST, RNAi and gene expression. We identified 193 unique EST sequences and 65 of them had not been reported in planarian. By RNAi analysis, we showed that 48 genes, when down-regulated individually, had no effect on regeneration. Furthermore, we identified 3 groups of tissue specific expressing genes that were useful for cell lineage analysis. We concluded that the Dugesia japonica Pek-1 strain could be another suitable animal model to regeneration research.
  • loading
  • [1]
    Adell, T., Marsal, M., Saló, E. Planarian GSK3β are involved in neural regeneration Dev. Genes Evol., 218 (2008),pp. 89-103
    [2]
    Adell, T., Saló, E., Boutros, M. et al. Smed-Evi/Wntless is required for β-catenin-dependent and -independent processes during planarian regeneration Development, 136 (2009),pp. 905-910
    [3]
    Agata, K., Soejima, Y., Kato, K. et al. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers Zoolog. Sci., 15 (1998),pp. 433-440
    [4]
    Agata, K., Watanabe, K. Molecular and cellular aspects of planarian regeneration Semin. Cell Dev. Biol., 10 (1999),pp. 377-383
    [5]
    Brockes, J.P. Amphibian limb regeneration: rebuilding a complex structure Science, 276 (1997),pp. 81-87
    [6]
    Carlson, B.M. Some principles of regeneration in mammalian systems Anat. Rec. B New Anat., 287 (2005),pp. 4-13
    [7]
    Cantarel, B.L., Korf, I., Robb, S.M. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes Genome Res., 18 (2008),pp. 188-196
    [8]
    Cebrià, F., Kudome, T., Nakazawa, M. et al. The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system Mech. Dev., 116 (2002),pp. 199-204
    [9]
    Cebrià, F., Kobayashi, C., Umesono, Y. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians Nature, 419 (2002),pp. 620-624
    [10]
    Cebrià, F., Nakazawa, M., Mineta, K. et al. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes Dev. Growth Differ., 44 (2002),pp. 135-146
    [11]
    Cebrià, F., Newmark, P.A. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture Development, 132 (2005),pp. 3691-3703
    [12]
    Cebrià, F. Regenerating the central nervous system: how easy for planarians! Dev Genes Evol., 217 (2007),pp. 733-748
    [13]
    Cebrià, F. Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study Neurosci. Res., 61 (2008),pp. 375-384
    [14]
    Dahm, A.G. The karyotypes of some freshwater Triclads from Europe and Japan (Turbellaria Tricladida Paludicola) Arkiv föer Zoologi., 16 (1963),pp. 41-67
    [15]
    Friedländer, M.R., Adamidi, C., Han, T. et al. High-resolution profiling and discovery of planarian small RNAs Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 11546-11551
    [16]
    González-Estévez, C., Arseni, V., Thambyrajah, R.S. et al. Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians Int. J. Dev. Biol., 53 (2009),pp. 493-505
    [17]
    Guo, T., Peters, A., Newmark, P.A. A Bruno-like gene is required for stem cell maintenance in planarians Dev. Cell, 11 (2006),pp. 159-169
    [18]
    Gurley, K., Rink, J., Sánchez Alvarado, A. β-catenin defines head versus tail identity during planarian regeneration and homeostasis Science, 319 (2008),pp. 323-327
    [19]
    Holstein, T., Hobmayer, E., Technau, U. Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn., 226 (2003),pp. 257-267
    [20]
    Ichikawa, A., Kawakatsu, M. Annot. Zool. Japon., 37 (1964),pp. 185-194
    [21]
    Iglesias, M., Gomez-Skarmeta, J.L., Saló, E. et al. Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians Development, 135 (1998),pp. 1215-1221
    [22]
    Koinuma, S., Umesono, Y., Watanabe, K. et al. Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells Gene, 259 (2000),pp. 171-176
    [23]
    Liu, D.Z. The freshwater planarians (Turbellarians) of China Chinese Journal of Zoology, 24 (1989),pp. 38-43
    [24]
    Ma, J.Y., Lv, J.Q., Chen, G.W. et al. Acta Genetica Sinica, 11 (2003),pp. 1145-1150
    [25]
    Mannini, L., Rossi, L., Deri, P. et al. Dev. Biol., 15 (2004),pp. 346-359
    [26]
    Michalopoulos, G., DeFrances, M. Liver regeneration Science, 276 (1997),pp. 60-66
    [27]
    Mineta, K., Nakazawa, M., Cebrià, F. et al. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 7666-7671
    [28]
    Molina, M.D., Saló, E., Cebrià, F. The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians Dev. Biol., 311 (2007),pp. 79-94
    [29]
    Molina, M.D., Saló, E., Cebrià, F. Gene Expr. Patterns, 9 (2009),pp. 246-253
    [30]
    Müller, P., Kuttenkeuler, D., Gesellchen, V. et al. Identification of JAK/STAT signalling components by genome-wide RNA interference Nature, 436 (2005),pp. 871-875
    [31]
    Newmark, P.A., Sánchez Alvarado, A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians Dev. Biol., 220 (2000),pp. 142-153
    [32]
    Newmark, P.A., Sánchez Alvarado, A. Not your father's planarian: a classic model enters the era of functional genomics Nat. Rev. Genet., 3 (2002),pp. 210-219
    [33]
    Oki, I., Tamura, S., Yamayoshi, T. et al. Hydrobiologia, 84 (1981),pp. 53-68
    [34]
    Orii, H., Watanabe, K. Dev. Growth Differ., 49 (2007),pp. 345-349
    [35]
    Oviedo, N.J., Levin, M. Smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis Development, 134 (2007),pp. 3121-3131
    [36]
    Petersen, C.P., Reddien, P.W. Smed-β catenin-1 is required for anteroposterior blastema polarity in planarian regeneration Science, 319 (2008),pp. 327-330
    [37]
    Poss, K.D., Keating, M.T., Nechiporuk, A. Tales of regeneration in zebrafish Dev. Dyn., 226 (2003),pp. 202-210
    [38]
    Qu, X.J., Wang, Y., Geng, W.J. et al. Sichuan Journal of Zoology., 27 (2008),pp. 205-209
    [39]
    Reddien, P.W., Sánchez Alvarado, A. Fundamentals of planarian regeneration Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 725-757
    [40]
    Reddien, P.W., Oviedo, N.J., Jennings, J.R. et al. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells Science, 310 (2005),pp. 1327-1330
    [41]
    Reddien, P.W., Bermange, A.L., Murfitt, K.J. et al. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria Dev. Cell, 8 (2005),pp. 635-649
    [42]
    Reddien, P.W., Bermange, A.L., Kicza, A.M. et al. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration Development, 134 (2007),pp. 4043-4051
    [43]
    Robb, S.M., Sánchez Alvarado, A. Identification of immunological reagents for use in the study of freshwater planarians by means of whole-mount immunofluorescence and confocal microscopy Genesis, 32 (2002),pp. 293-298
    [44]
    Rossi, L., Salvetti, A., Marincola, F.M. et al. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile Genome Biol., 8 (2007),p. R62
    [45]
    Rossi, L., Salvetti, A., Batistoni, R. et al. Planarians, a tale of stem cells Cell Mol. Life Sci., 65 (2008),pp. 16-23
    [46]
    Saló, E. The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes) Bioessays, 28 (2006),pp. 546-559
    [47]
    Saló, E., Abril, J.F., Adell, T. et al. Planarian regeneration: achievements and future directions after 20 years of research Cell Differ. Dev., 53 (2009),pp. 1317-1327
    [48]
    Salvetti, A., Rossi, L., Deri, P. et al. An MCM 2-related gene is expressed in proliferating cells of intact and regenerating planarians Dev. Dyn., 218 (2000),pp. 603-614
    [49]
    Salvetti, A., Rossi, L., Lena, A. et al. Development, 132 (2005),pp. 1863-1874
    [50]
    Salvetti, A., Rossi, L., Bonuccelli, L. et al. Adult stem cell plasticity: neoblast repopulation in non-lethally irradiated planarians Dev. Biol., 328 (2009),pp. 305-314
    [51]
    Sánchez Alvarado, A. The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration Curr. Opin. Genet. Dev., 13 (2003),pp. 438-444
    [52]
    Sánchez Alvarado, A., Newmark, P.A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 5049-5054
    [53]
    Tamura, S., Oki, I., Kawakatsu, M. Hydrobiologia, 227 (1991),pp. 157-162
    [54]
    Tu, T. Notes on some tubellarians from the Tsinghua campus Sci. Rep. Nat. TsingHua Univ. Ser. B, 1 (1934),pp. 191-205
    [55]
    Umesono, Y., Watanabe, K., Agata, K. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain Dev. Growth Differ., 39 (1997),pp. 723-727
    [56]
    Umesono, Y., Watanabe, K., Agata, K. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes Dev. Genes Evol., 209 (1999),pp. 31-39
    [57]
    Wang, Y.X., Chen, Y.Z., Zhang, L.Q. Sichuan Journal of Zoology, 25 (2006),pp. 794-795
    [58]
    Yazawa, S., Umesono, Y., Hayashi, T. et al. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22329-22334
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return