5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 9
Sep.  2010
Turn off MathJax
Article Contents

Now and future of mouse mutagenesis for human disease models

doi: 10.1016/S1673-8527(09)60076-X
More Information
  • Corresponding author: E-mail address: gondo@brc.riken.jp (Yoichi Gondo)
  • Received Date: 2010-05-26
  • Accepted Date: 2010-07-31
  • Rev Recd Date: 2010-07-30
  • Available Online: 2010-10-07
  • Publish Date: 2010-09-20
  • One of the major objectives of the Human Genome Project is to understand the biological function of the gene and genome as well as to develop clinical applications for human diseases. For this purpose, the experimental validations and preclinical trails by using animal models are indispensable. The mouse (Mus musculus) is one of the best animal models because genetics is well established in the mouse and embryonic manipulation technologies are also well developed. Large-scale mouse mutagenesis projects have been conducted to develop various mouse models since 1997. Originally, the phenotype-driven mutagenesis with N-ethyl-N-nitrosourea (ENU) has been the major efforts internationally then knockout/conditional mouse projects and gene-driven mutagenesis have been following. At the beginning, simple monogenic traits in the experimental condition have been elucidated. Then, more complex traits with variety of environmental interactions and gene-to-gene interactions (epistasis) have been challenged with mutant mice. In addition, chromosomal substitution strains and collaborative cross strains are also available to elucidate the complex traits in the mouse. Altogether, mouse models with mutagenesis and various laboratory strains will accelerate the studies of functional genomics in the mouse as well as in human.
  • loading
  • [1]
    Augustin, M., Sedlmeier, R., Peters, T. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis Mamm. Genome, 16 (2004),pp. 405-413
    [2]
    Austin, C.P., Battey, J.F., Bradley, A. et al. The knockout mouse project Nat. Genet., 36 (2004),pp. 921-924
    [3]
    Auwerx, J., Avner, P., Baldock, R. et al. The European dimension for the mouse genome mutagenesis program Nat. Genet., 36 (2004),pp. 925-927
    [4]
    Butler, D., Smaglik, P. Draft data leave geneticists with a mountain still to climb Nature, 405 (2000),pp. 984-985
    [5]
    Campbell, P.J., Stephens, P.J., Pleasance, E.D. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing Nat. Genet., 40 (2008),pp. 722-729
    [6]
    Clapcote, S.J., Lipina, T.V., Millar, J.K. et al. Neuron, 54 (2007),pp. 387-402
    [7]
    Complex Trait Consortium The Collaborative Cross, a community resource for the genetic analysis of complex traits Nat. Genet., 36 (2004),pp. 1133-1137
    [8]
    Doetschman, T., Maeda, N., Smithies, O. Proc. Natl. Acad. Sci. USA, 85 (1988),pp. 8583-8587
    [9]
    ENCODE Project Consortium The ENCODE (ENCyclopedia of DNA Elements) Project Science, 306 (2004),pp. 636-640
    [10]
    Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics Nat. Rev. Genet., 9 (2008),pp. 803-810
    [11]
    Gondo, Y.
    [12]
    Gondo, Y., Fukumura, R., Murata, T. et al. Next-generation gene targeting in the mouse for functional genomics BMB Rep., 42 (2009),pp. 315-323
    [13]
    Hitotsumachi, S., Carpenter, D.A., Russell, W.L. Proc. Natl. Acad. Sci. USA, 82 (1985),pp. 6619-6621
    [14]
    Hrabé de Angelis, M.H., Flaswinkel, H., Fuchs, H. et al. Genome-wide, large scale production of mutant mice by ENU mutagenesis Nat. Genet., 25 (2000),pp. 444-447
    [15]
    International Cancer Genome Consortium International network of cancer genome projects Nature, 464 (2010),pp. 993-998
    [16]
    International HapMap Consortium The International HapMap Project Nature, 426 (2003),pp. 789-796
    [17]
    International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [18]
    International Mouse Knockout Consortium A mouse for all reasons Cell, 128 (2007),pp. 9-13
    [19]
    Justice, M.J., Noveroske, J.K., Weber, J.S. et al. Mouse ENU mutagenesis Hum. Mol. Genet., 8 (1999),pp. 1955-1963
    [20]
    Kawai, J., Shinagawa, A., Shibata, K. et al. Functional annotation of a full-length mouse cDNA collection Nature, 409 (2001),pp. 685-690
    [21]
    King, D.P., Zhao, Y., Sangoram, A.M. et al. Cell, 89 (1997),pp. 641-653
    [22]
    Labrie, V., Fukumura, R., Rastogi, A. et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model Hum. Mol. Genet., 18 (2009),pp. 3227-3243
    [23]
    Macilwain, C. World leaders heap praise on human genome landmark Nature, 405 (2000),pp. 983-984
    [24]
    Michaud, E.J., Culiat, C.T., Klebig, M.L. et al. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice BMC Genomics, 6 (2005),p. 164
    [25]
    Millar, J.K., Wilson-Annan, J.C., Anderson, S. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia Hum. Mol. Genet., 9 (2000),pp. 1415-1423
    [26]
    Moser, A.R., Pitot, H.C., Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse Science, 247 (1990),pp. 322-324
    [27]
    Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome Nature, 420 (2002),pp. 520-562
    [28]
    Nadeau, J.H., Singer, J.B., Matin, A. et al. Analysing complex genetic traits with chromosome substitution strains Nat. Genet., 24 (2000),pp. 221-225
    [29]
    Nadeau, J.H., Balling, R., Barsh, G. et al. Sequence interpretation. Functional annotation of mouse genome sequences Science, 291 (2001),pp. 1251-1255
    [30]
    Nolan, P.M., Peters, J., Strivens, M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse Nat. Genet., 25 (2000),pp. 440-443
    [31]
    Noveroske, J.K., Weber, J.S., Justice, M.J. Mamm. Genome, 11 (2000),pp. 478-483
    [32]
    Okazaki, Y., Furuno, M., Kasukawa, T. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
    [33]
    Ota, T., Suzuki, Y., Nishikawa, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs Nat. Genet., 36 (2004),pp. 40-45
    [34]
    Quwailid, M.M., Hugill, A., Dear, N. et al. A gene-driven ENU-based approach to generating an allelic series in any gene Mamm. Genome, 15 (2004),pp. 585-591
    [35]
    Russell, W.L., Kelly, E.M., Hunsicker, P.R. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 5818-5819
    [36]
    Russell, W.L., Hunsicker, P.R., Raymer, G.D. et al. Dose-response curve for ethyl-nitrosourea-induced specific-locus mutations in mouse spermatogonia Proc Natl. Acad. Sci. USA, 79 (1982),pp. 3589-3591
    [37]
    Russell, W.L., Hunsicker, P.R., Carpenter, D.A. et al. Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 3592-3593
    [38]
    Sakuraba, Y., Sezutsu, H., Takahasi, K.R. et al. Molecular characterization of ENU mouse mutagenesis and archives Biochem. Biophys. Res. Commun., 336 (2005),pp. 609-616
    [39]
    Service, R.F. Gene sequencing. The race for the $1000 genome Science, 311 (2006),pp. 1544-1546
    [40]
    Su, L.-K., Kinzler, K.W., Vogelstein, B. et al. Science, 256 (1992),pp. 668-670
    [41]
    Thomas, K.R., Folger, K.R., Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome Cell, 44 (1986),pp. 419-428
    [42]
    Toyoda, T., Wada, A. Omic space: coordinate-based integration and analysis of genomic phenomic interactions Bioinformatics, 20 (2004),pp. 1759-1765
    [43]
    Venter, J.C., Adams, M.D., Myers, E.W. et al. The sequence of the human genome Science, 291 (2001),pp. 1304-1351
    [44]
    Via, M., Gignoux, C., Burchard, E.G. The 1000 Genomes Project: new opportunities for research and social challenges Genome Med., 2 (2010),p. 3
    [45]
    Vitaterna, M.H., King, D.P., Chang, A.M. et al. Science, 264 (1994),pp. 719-725
    [46]
    Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (210) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return