[1] |
Augustin, M., Sedlmeier, R., Peters, T. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis Mamm. Genome, 16 (2004),pp. 405-413
|
[2] |
Austin, C.P., Battey, J.F., Bradley, A. et al. The knockout mouse project Nat. Genet., 36 (2004),pp. 921-924
|
[3] |
Auwerx, J., Avner, P., Baldock, R. et al. The European dimension for the mouse genome mutagenesis program Nat. Genet., 36 (2004),pp. 925-927
|
[4] |
Butler, D., Smaglik, P. Draft data leave geneticists with a mountain still to climb Nature, 405 (2000),pp. 984-985
|
[5] |
Campbell, P.J., Stephens, P.J., Pleasance, E.D. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing Nat. Genet., 40 (2008),pp. 722-729
|
[6] |
Clapcote, S.J., Lipina, T.V., Millar, J.K. et al. Neuron, 54 (2007),pp. 387-402
|
[7] |
Complex Trait Consortium The Collaborative Cross, a community resource for the genetic analysis of complex traits Nat. Genet., 36 (2004),pp. 1133-1137
|
[8] |
Doetschman, T., Maeda, N., Smithies, O. Proc. Natl. Acad. Sci. USA, 85 (1988),pp. 8583-8587
|
[9] |
ENCODE Project Consortium The ENCODE (ENCyclopedia of DNA Elements) Project Science, 306 (2004),pp. 636-640
|
[10] |
Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics Nat. Rev. Genet., 9 (2008),pp. 803-810
|
[11] |
Gondo, Y.
|
[12] |
Gondo, Y., Fukumura, R., Murata, T. et al. Next-generation gene targeting in the mouse for functional genomics BMB Rep., 42 (2009),pp. 315-323
|
[13] |
Hitotsumachi, S., Carpenter, D.A., Russell, W.L. Proc. Natl. Acad. Sci. USA, 82 (1985),pp. 6619-6621
|
[14] |
Hrabé de Angelis, M.H., Flaswinkel, H., Fuchs, H. et al. Genome-wide, large scale production of mutant mice by ENU mutagenesis Nat. Genet., 25 (2000),pp. 444-447
|
[15] |
International Cancer Genome Consortium International network of cancer genome projects Nature, 464 (2010),pp. 993-998
|
[16] |
International HapMap Consortium The International HapMap Project Nature, 426 (2003),pp. 789-796
|
[17] |
International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
|
[18] |
International Mouse Knockout Consortium A mouse for all reasons Cell, 128 (2007),pp. 9-13
|
[19] |
Justice, M.J., Noveroske, J.K., Weber, J.S. et al. Mouse ENU mutagenesis Hum. Mol. Genet., 8 (1999),pp. 1955-1963
|
[20] |
Kawai, J., Shinagawa, A., Shibata, K. et al. Functional annotation of a full-length mouse cDNA collection Nature, 409 (2001),pp. 685-690
|
[21] |
King, D.P., Zhao, Y., Sangoram, A.M. et al. Cell, 89 (1997),pp. 641-653
|
[22] |
Labrie, V., Fukumura, R., Rastogi, A. et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model Hum. Mol. Genet., 18 (2009),pp. 3227-3243
|
[23] |
Macilwain, C. World leaders heap praise on human genome landmark Nature, 405 (2000),pp. 983-984
|
[24] |
Michaud, E.J., Culiat, C.T., Klebig, M.L. et al. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice BMC Genomics, 6 (2005),p. 164
|
[25] |
Millar, J.K., Wilson-Annan, J.C., Anderson, S. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia Hum. Mol. Genet., 9 (2000),pp. 1415-1423
|
[26] |
Moser, A.R., Pitot, H.C., Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse Science, 247 (1990),pp. 322-324
|
[27] |
Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome Nature, 420 (2002),pp. 520-562
|
[28] |
Nadeau, J.H., Singer, J.B., Matin, A. et al. Analysing complex genetic traits with chromosome substitution strains Nat. Genet., 24 (2000),pp. 221-225
|
[29] |
Nadeau, J.H., Balling, R., Barsh, G. et al. Sequence interpretation. Functional annotation of mouse genome sequences Science, 291 (2001),pp. 1251-1255
|
[30] |
Nolan, P.M., Peters, J., Strivens, M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse Nat. Genet., 25 (2000),pp. 440-443
|
[31] |
Noveroske, J.K., Weber, J.S., Justice, M.J. Mamm. Genome, 11 (2000),pp. 478-483
|
[32] |
Okazaki, Y., Furuno, M., Kasukawa, T. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
|
[33] |
Ota, T., Suzuki, Y., Nishikawa, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs Nat. Genet., 36 (2004),pp. 40-45
|
[34] |
Quwailid, M.M., Hugill, A., Dear, N. et al. A gene-driven ENU-based approach to generating an allelic series in any gene Mamm. Genome, 15 (2004),pp. 585-591
|
[35] |
Russell, W.L., Kelly, E.M., Hunsicker, P.R. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 5818-5819
|
[36] |
Russell, W.L., Hunsicker, P.R., Raymer, G.D. et al. Dose-response curve for ethyl-nitrosourea-induced specific-locus mutations in mouse spermatogonia Proc Natl. Acad. Sci. USA, 79 (1982),pp. 3589-3591
|
[37] |
Russell, W.L., Hunsicker, P.R., Carpenter, D.A. et al. Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 3592-3593
|
[38] |
Sakuraba, Y., Sezutsu, H., Takahasi, K.R. et al. Molecular characterization of ENU mouse mutagenesis and archives Biochem. Biophys. Res. Commun., 336 (2005),pp. 609-616
|
[39] |
Service, R.F. Gene sequencing. The race for the $1000 genome Science, 311 (2006),pp. 1544-1546
|
[40] |
Su, L.-K., Kinzler, K.W., Vogelstein, B. et al. Science, 256 (1992),pp. 668-670
|
[41] |
Thomas, K.R., Folger, K.R., Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome Cell, 44 (1986),pp. 419-428
|
[42] |
Toyoda, T., Wada, A. Omic space: coordinate-based integration and analysis of genomic phenomic interactions Bioinformatics, 20 (2004),pp. 1759-1765
|
[43] |
Venter, J.C., Adams, M.D., Myers, E.W. et al. The sequence of the human genome Science, 291 (2001),pp. 1304-1351
|
[44] |
Via, M., Gignoux, C., Burchard, E.G. The 1000 Genomes Project: new opportunities for research and social challenges Genome Med., 2 (2010),p. 3
|
[45] |
Vitaterna, M.H., King, D.P., Chang, A.M. et al. Science, 264 (1994),pp. 719-725
|
[46] |
Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
|