[1] |
Bai, X.F., Luo, L.J., Yan, W.H. et al. BMC Genet., 11 (2010),pp. 16-26
|
[2] |
Du, J.H., Fan, Y.Y., Wang, L. et al. Dissection of QTLs for yield traits by using near isogenic lines derived from residual heterozygous lines in rice Chinese Rice Sci., 22 (2008),pp. 1-7
|
[3] |
Fan, C.C., Xing, Y.Z., Mao, H.L. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
|
[4] |
Hu, P.S., Luo, J., Tang, S.Q. Utilization of American glabrous rice and breeding of good-quality varieties CRRN., 8 (2000),pp. 13-15
|
[5] |
IRGSP The map based sequence of the rice genome Nature, 436 (2005),pp. 793-800
|
[6] |
Juliano, B.O., Villareal, C.P.
|
[7] |
Lin, L.H., Wu, W.R. Mapping of QTLs underlying grain shape and grain weight in rice Plant Mol. Breed., 1 (2003),pp. 337-342
|
[8] |
Lincoln, S., Daley, M., Lander, E.
|
[9] |
Lu, Y.J., Zheng, K.L. A simple method for isolation of rice DNA Chinese Rice Sci., 6 (1992),pp. 47-48
|
[10] |
Luo, Y.k., Zhu, Z.W., Chen, N. et al. Grain types and related quality characteristics of rice in China Chinese Rice Sci., 18 (2004),pp. 135-139
|
[11] |
Matsubara, K., Kono, I., Hori, K. et al. Theor. Appl. Genet., 117 (2008),pp. 935-945
|
[12] |
Shao, G.N., Tang, S.Q., Luo, J. et al. QTL analysis for flag leaf and grain shape and populations construction derived from related residual heterozygous lines in rice Plant Mol. Breed., 7 (2009),pp. 16-22
|
[13] |
Shi, Y.F., Ying, J.Z., Wang, L. et al. Screening SSR markers for rice variety identification Chinese Rice Sci., 19 (2005),pp. 195-201
|
[14] |
Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
|
[15] |
Song, X.J., Huang, W., Shi, M. et al. QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
|
[16] |
Tan, C.X., Ji, X.M., Yang, Y. et al. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations J. Genet. Genomics, 32 (2005),pp. 399-407
|
[17] |
Tan, Y.F., Xing, Y.Z., Li, J.X. et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid Theor. Appl. Genet., 101 (2000),pp. 823-829
|
[18] |
Tuinstra, M.R., Ejeta, G., Goldsbrough, P.B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci Theor. Appl. Genet., 95 (1997),pp. 1005-1011
|
[19] |
Unnevehr, L.J., Duff, B., Juliano, B.O.
|
[20] |
Wan, X.Y., Wan, J.M., Jiang, L. et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects Theor. Appl. Genet., 112 (2006),pp. 1258-1270
|
[21] |
Wang, S., Basten, C.J., Zeng, Z.B.
|
[22] |
Weng, J.F., Gu, S.H., Wan, X.Y. et al. Cell Res., 18 (2008),pp. 1199-1209
|
[23] |
Xu, J.L., Xue, Q.Z., Luo, L.J. et al. Chinese Rice Sci., 16 (2002),pp. 6-10
|
[24] |
Xu, Z.J., Chen, W.F., Ma, D.R. et al. Correlations between rice grain shapes and main qualitative characteristics Acta Agron. Sin., 30 (2004),pp. 894-900
|
[25] |
Yamanaka, N., Watanabe, S., Toda, K. et al. Theor. Appl. Genet., 110 (2005),pp. 634-639
|
[26] |
Yu, S.W., Yang, C.D., Fan, Y.Y. et al. Genetic dissection of a thousand-grain weight quantitative trait locus on rice chromosome 1 Chin. Sci. Bull., 53 (2008),pp. 1389-1394
|
[27] |
Zheng, T.Q., Xu, J.L., Li, Z.K. et al. Plant Breeding, 126 (2007),pp. 158-163
|
[1] | Kangli Sun, Minghui Huang, Wubei Zong, Dongdong Xiao, Chen Lei, Yanqiu Luo, Yingang Song, Shengting Li, Yu Hao, Wanni Luo, Bingqun Xu, Xiaotong Guo, Guangliang Wei, Letian Chen, Yao-Guang Liu, Jingxin Guo. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits[J]. Journal of Genetics and Genomics, 2022, 49(5): 437-447. doi: 10.1016/j.jgg.2022.02.018 |
[2] | Libin Chen, Chonghui Ji, Degui Zhou, Xin Gou, Jianian Tang, Yongjie Jiang, Jingluan Han, Yao-Guang Liu, Letian Chen, Yongyao Xie. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 481-491. doi: 10.1016/j.jgg.2022.03.003 |
[3] | Hanwen Li, Jinqiang Nian, Shuang Fang, Meng Guo, Xiahe Huang, Fengxia Zhang, Qing Wang, Jian Zhang, Jiaoteng Bai, Guojun Dong, Peiyong Xin, Xianzhi Xie, Fan Chen, Guodong Wang, Yingchun Wang, Qian Qian, Jianru Zuo, Jinfang Chu, Xiaohui Ma. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 469-480. doi: 10.1016/j.jgg.2022.02.006 |
[4] | Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025 |
[5] | Xinkai Zhou, Tao Zhu, Wen Fang, Ranran Yu, Zhaohui He, Dijun Chen. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. Journal of Genetics and Genomics, 2022, 49(12): 1127-1137. doi: 10.1016/j.jgg.2022.04.003 |
[6] | Guangyu Liu, Wanxia Jiang, Lei Tian, Yongcai Fu, Lubin Tan, Zuofeng Zhu, Chuanqing Sun, Fengxia Liu. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 458-468. doi: 10.1016/j.jgg.2022.01.007 |
[7] | Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002 |
[8] | Penglin Zhan, Shuaipeng Ma, Zhili Xiao, Fangping Li, Xin Wei, Shaojun Lin, Xiaoling Wang, Zhe Ji, Yu Fu, Jiahao Pan, Mi Zhou, Yue Liu, Zengyuan Chang, Lu Li, Suhong Bu, Zupei Liu, Haitao Zhu, Guifu Liu, Guiquan Zhang, Shaokui Wang. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008 |
[9] | Xiaodong Xin, Xingwang Li, Junkai Zhu, Xiaobin Liu, Zhenghu Chu, Jiali Shen, Changyin Wu. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice[J]. Journal of Genetics and Genomics, 2021, 48(6): 485-496. doi: 10.1016/j.jgg.2021.04.011 |
[10] | Zhiyao Lv, Rui Dai, Haoran Xu, Yongxin Liu, Bo Bai, Ying Meng, Haiyan Li, Xiaofeng Cao, Yang Bai, Xianwei Song, Jingying Zhang. The rice histone methylation regulates hub species of the root microbiota[J]. Journal of Genetics and Genomics, 2021, 48(9): 836-843. doi: 10.1016/j.jgg.2021.06.005 |
[11] | Aili Qu, Yan Xu, Xinxing Yu, Qi Si, Xuwen Xu, Changhao Liu, Liuyi Yang, Yueping Zheng, Mengmeng Zhang, Shuqun Zhang, Juan Xu. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705. doi: 10.1016/j.jgg.2021.04.013 |
[12] | Guo Zong, Ahong Wang, Lu Wang, Guohua Liang, Minghong Gu, Tao Sang, Bin Han. A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004 |
[13] | Jie-Zheng Ying, Ji-Ping Gao, Jun-Xiang Shan, Mei-Zhen Zhu, Min Shi, Hong-Xuan Lin. Dissecting the Genetic Basis of Extremely Large Grain Shape in Rice Cultivar ‘JZ1560’[J]. Journal of Genetics and Genomics, 2012, 39(7): 325-333. doi: 10.1016/j.jgg.2012.03.001 |
[14] | Li Zhang, Jin Wang, Ronghua Zhou, Jizeng Jia. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype[J]. Journal of Genetics and Genomics, 2011, 38(8): 373-378. doi: 10.1016/j.jgg.2011.07.002 |
[15] | Lei Tian, Lubin Tan, Fengxia Liu, Hongwei Cai, Chuanqing Sun. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon[J]. Journal of Genetics and Genomics, 2011, 38(12): 593-601. doi: 10.1016/j.jgg.2011.11.005 |
[16] | Bosen Zhang, Feng Tian, Lubin Tan, Daoxin Xie, Chuanqing Sun. Characterization of a novel high-tillering dwarf 3 mutant in rice[J]. Journal of Genetics and Genomics, 2011, 38(9): 411-418. doi: 10.1016/j.jgg.2011.08.002 |
[17] | Lifang Hu, Hexin Tan, Wanqi Liang, Dabing Zhang. The Post-meiotic Deficicent Anther1 (PDA1) gene is required for post-meiotic anther development in rice[J]. Journal of Genetics and Genomics, 2010, 37(1): 37-46. doi: 10.1016/S1673-8527(09)60023-0 |
[18] | Dongling Qi, Guizhen Guo, Myung-chul Lee, Junguo Zhang, Guilan Cao, Sanyuan Zhang, Seok-cheol Suh, Qingyang Zhou, Longzhi Han. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice[J]. Journal of Genetics and Genomics, 2008, 35(5): 299-305. doi: 10.1016/S1673-8527(08)60043-0 |
[19] | Bing Yue, Weiya Xue, Lijun Luo, Yongzhong Xing. Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2008, 35(9): 569-575. doi: 10.1016/S1673-8527(08)60077-6 |
[20] | Longzhi Han, Yongli Qiao, Sanyuan Zhang, Yuanyuan Zhang, Guilan Cao, Jonghwan Kim, Kyuseong Lee, Heejong Koh. Identification of Quantitative Trait Loci for Cold Response of Seedling Vigor Traits in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 239-246. doi: 10.1016/S1673-8527(07)60025-3 |