[1] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[2] |
Borsani, O., Zhu, J., Verslues, P.E. et al. Cell, 123 (2005),pp. 1279-1291
|
[3] |
Brown, J.R., Doolittle, W.F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 2441-2445
|
[4] |
Capodici, J., Kariko, K., Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference J. Immunol., 169 (2002),pp. 5196-5201
|
[5] |
Carmell, M.A., Hannon, G.J. RNase III enzymes and the initiation of gene silencing Nat. Struct. Mol. Biol., 11 (2004),pp. 214-218
|
[6] |
Carmell, M.A., Xuan, Z., Zhang, M.Q. et al. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis Genes Dev., 16 (2002),pp. 2733-2742
|
[7] |
Crouch, R.J., Arudchandran, A., Cerritelli, S.M. Methods Enzymol., 341 (2001),pp. 395-413
|
[8] |
Eddy, S.R. Non-coding RNA genes and the modern RNA world Nat. Rev. Genet., 2 (2001),pp. 919-929
|
[9] |
Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res., 32 (2004),pp. 1792-1797
|
[10] |
Edgar, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity BMC Bioinformatics, 5 (2004),pp. 113-131
|
[11] |
Edgell, D.R., Klenk, H.P., Doolittle, W.F. Gene duplications in evolution of archaeal family B DNA polymerases J. Bacteriol., 179 (1997),pp. 2632-2640
|
[12] |
Fire, A., Xu, S., Montgomery, M.K. et al. Nature, 391 (1998),pp. 806-811
|
[13] |
Girard, A., Sachidanandam, R., Hannon, G.J. et al. A germline-specific class of small RNAs binds mammalian Piwi proteins Nature, 442 (2006),pp. 199-202
|
[14] |
Gogarten, J.P., Kibak, H., Dittrich, P. et al. Proc. Natl Acad. Sci. USA, 86 (1989),pp. 6661-6665
|
[15] |
Grissa, I., Vergnaud, G., Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats BMC Bioinformatics, 8 (2007),p. 172
|
[16] |
Haft, D.H., Selengut, J., Mongodin, E.F. et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes PLoS Comput. Biol., 1 (2005),p. e60
|
[17] |
Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
|
[18] |
He, L., Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
|
[19] |
Hutvagner, G., Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex Science, 297 (2002),pp. 2056-2060
|
[20] |
Iwabe, N., Kuma, K., Hasegawa, M. et al. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes Proc. Natl. Acad. Sci. USA, 86 (1989),pp. 9355-9359
|
[21] |
Jin, L., Kryukov, K., Suzuki, Y. et al. The evolutionary study of small RNA-directed gene silencing pathways by investigating RNase III enzymes Gene, 435 (2009),pp. 1-8
|
[22] |
Kumar, S., Nei, M., Dudley, J. et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences Brief. Bioinformatics, 9 (2008),pp. 299-306
|
[23] |
Lee, Y., Ahn, C., Han, J. et al. The nuclear RNase III Drosha initiates microRNA processing Nature, 425 (2003),pp. 415-419
|
[24] |
Lillestol, R.K., Redder, P., Garrett, R.A. et al. A putative viral defence mechanism in archaeal cells Archaea, 2 (2006),pp. 59-72
|
[25] |
Londei, P. Evolution of translational initiation: new insights from the archaea FEMS Microbiol. Rev., 29 (2005),pp. 185-200
|
[26] |
Ma, J.B., Yuan, Y.R., Meister, G. et al. Nature, 434 (2005),pp. 666-670
|
[27] |
Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action Biol. Direct., 1 (2006),p. 7
|
[28] |
Marchler-Bauer, A., Anderson, J.B., Chitsaz, F. et al. CDD: specific functional annotation with the Conserved Domain Database Nucleic Acids Res., 37 (2009),pp. D205-D210
|
[29] |
Martianov, I., Ramadass, A., Serra Barros, A. et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript Nature, 445 (2007),pp. 666-670
|
[30] |
Masse, E., Escorcia, F.E., Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli Genes Dev., 17 (2003),pp. 2374-2383
|
[31] |
Mojica, F.J., Diez-Villasenor, C., Soria, E. et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria Mol. Microbiol., 36 (2000),pp. 244-246
|
[32] |
Ohtani, N., Yanagawa, H., Tomita, M. et al. Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7 Nucleic Acids Res., 32 (2004),pp. 5809-5819
|
[33] |
Parker, J.S., Roe, S.M., Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex Nature, 434 (2005),pp. 663-666
|
[34] |
Provost, P., Dishart, D., Doucet, J. et al. Ribonuclease activity and RNA binding of recombinant human Dicer EMBO J., 21 (2002),pp. 5864-5874
|
[35] |
Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
|
[36] |
Schwarz, D.S., Hutvagner, G., Du, T. et al. Asymmetry in the assembly of the RNAi enzyme complex Cell, 115 (2003),pp. 199-208
|
[37] |
Song, J.J., Smith, S.K., Hannon, G.J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity Science, 305 (2004),pp. 1434-1437
|
[38] |
Song, J.J., Liu, J., Tolia, N.H. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes Nat. Struct. Biol., 10 (2003),pp. 1026-1032
|
[39] |
Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),pp. 4673-4680
|
[40] |
Valentin-Hansen, P., Eriksen, M., Udesen, C. The bacterial Sm-like protein Hfq: a key player in RNA transactions Mol. Microbiol., 51 (2004),pp. 1525-1533
|
[41] |
van der Oost, J., Jore, M.M., Westra, E.R. et al. CRISPR-based adaptive and heritable immunity in prokaryotes Trends Biochem. Sci., 34 (2009),pp. 401-407
|
[42] |
Vogel, J., Bartels, V., Tang, T.H. et al. Nucleic Acids Res., 31 (2003),pp. 6435-6443
|
[43] |
Voinnet, O. Origin, biogenesis, and activity of plant microRNAs Cell, 136 (2009),pp. 669-687
|
[44] |
Waterhouse, P.M., Fusaro, A.F. Plant science. Viruses face a double defense by plant small RNAs Science, 313 (2006),pp. 54-55
|
[45] |
Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 4576-4579
|
[46] |
Yang, Q., Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1 Biochemistry, 44 (2005),pp. 13591-13601
|
[47] |
Zhang, H., Kolb, F.A., Jaskiewicz, L. et al. Single processing center models for human Dicer and bacterial RNase III Cell, 118 (2004),pp. 57-68
|
[48] |
Zhao, T., Li, G., Mi, S. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii Genes Dev., 21 (2007),pp. 1190-1203
|
[49] |
Zillig, W., Klenk, H.P., Palm, P. et al. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria Can. J. Microbiol., 35 (1989),pp. 73-80
|