5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 7
Jul.  2010
Turn off MathJax
Article Contents

Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis

doi: 10.1016/S1673-8527(09)60061-8
More Information
  • Corresponding author: E-mail address: yushicang@163.com (Shi-Cang Yu); E-mail address: bianxiuwu@263.net (Xiu-Wu Bian)
  • Received Date: 2010-03-25
  • Accepted Date: 2010-05-20
  • Rev Recd Date: 2010-05-14
  • Available Online: 2010-07-24
  • Publish Date: 2010-07-20
  • Growing evidence suggests that myeloid-derived suppressor cells (MDSCs), which have been named “immature myeloid cells” or “myeloid suppressor cells” (MSCs), play a critical role during the progression of cancer in tumor-bearing mice and cancer patients. As their name implies, these cells are derived from bone marrow and have a tremendous potential to suppress immune responses. Recent studies indicated that these cells also have a crucial role in tumor progression. MDSCs can directly incorporate into tumor endothelium. They secret many pro-angiogenic factors as well. In addition, they play an essential role in cancer invasion and metastasis through inducing the production of matrix metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. Increasing evidence supports the idea that cancer stem cells (CSCs) are responsible for tumorigenesis, resistance to therapies, invasion and metastasis. Here, we hypothesize that CSCs may “hijack” MDSCs for use as alternative niche cells, leading to the maintenance of stemness and enhanced chemo- and radio-therapy resistance. The countermeasure that directly targets to MDSCs may be useful for against angiogenesis and preventing cancer from invasion and metastasis. Therefore, the study of MDSCs is important to understand tumor progression and to enhance the therapeutic efficacy against cancer.
  • loading
  • [1]
    Arai, K., Takano, S., Teratani, T. et al. S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets, 8 (2008),pp. 243-252
    [2]
    Balkwill, F., Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 357 (2001),pp. 539-545
    [3]
    Belotti, D., Paganoni, P., Manenti, L. et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation Cancer Res., 63 (2003),pp. 5224-5229
    [4]
    Bosco, M.C., Puppo, M., Blengio, F. et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration Immunobiology, 213 (2008),pp. 733-749
    [5]
    Bronte, V., Kasic, T., Gri, G. et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers J. Exp. Med., 201 (2005),pp. 1257-1268
    [6]
    Bunt, S.K., Sinha, P., Clements, V.K. et al. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression J. Immunol., 176 (2006),pp. 284-290
    [7]
    Cauley, L.S., Miller, E.E., Yen, M. et al. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma J. Immunol., 165 (2000),pp. 6056-6066
    [8]
    Clark, C.E., Hingorani, S.R., Mick, R. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion Cancer Res., 67 (2007),pp. 9518-9527
    [9]
    Clarke, M.F., Dick, J.E., Dirks, P.B. et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells Cancer Res., 66 (2006),pp. 9339-9344
    [10]
    Dean, R.A., Butler, G.S., Hamma-Kourbali, Y. et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis Mol. Cell Biol., 27 (2007),pp. 8454-8465
    [11]
    DeNardo, D.G., Barreto, J.B., Andreu, P. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages Cancer Cell, 16 (2009),pp. 91-102
    [12]
    Dhodapkar, M.V., Dhodapkar, K.M., Palucka, A.K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance Cell Death Differ., 15 (2008),pp. 39-50
    [13]
    Dolcetti, L., Marigo, I., Mantelli, B. et al. Myeloid-derived suppressor cell role in tumor-related inflammation Cancer Lett, 267 (2008),pp. 216-225
    [14]
    Du, R., Lu, K.V., Petritsch, C. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion Cancer Cell, 13 (2008),pp. 206-220
    [15]
    Friedlander, M., Dorrell, M.I., Ritter, M.R. et al. Progenitor cells and retinal angiogenesis Angiogenesis, 10 (2007),pp. 89-101
    [16]
    Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects Nat. Rev. Immunol., 4 (2004),pp. 941-952
    [17]
    Gabrilovich, D., Ishida, T., Oyama, T. et al. Blood, 92 (1998),pp. 4150-4166
    [18]
    Gabrilovich, D.I., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system Nat. Rev. Immunol., 9 (2009),pp. 162-174
    [19]
    Gabrilovich, D.I., Chen, H.L., Girgis, K.R. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells Nat. Med., 2 (1996),pp. 1096-1103
    [20]
    Gilbertson, R.J., Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche Nat. Rev. Cancer, 7 (2007),pp. 733-736
    [21]
    Hiratsuka, S., Watanabe, A., Aburatani, H. et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis Nat. Cell Biol., 8 (2006),pp. 1369-1375
    [22]
    Huang, B., Pan, P.Y., Li, Q. et al. Cancer Res., 66 (2006),pp. 1123-1131
    [23]
    Huysentruyt, L.C., Mukherjee, P., Banerjee, D. et al. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model Int. J. Cancer, 123 (2008),pp. 73-84
    [24]
    Ilkovitch, D., Lopez, D.M. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression Cancer Res., 69 (2009),pp. 5514-5521
    [25]
    Jin, D.K., Shido, K., Kopp, H.G. et al. Nat. Med., 12 (2006),pp. 557-567
    [26]
    Kerbel, R.S., Yu, J., Tran, J. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches Cancer Metastasis Rev., 20 (2001),pp. 79-86
    [27]
    Kitamura, T., Kometani, K., Hashida, H. et al. Nat. Genet., 39 (2007),pp. 467-475
    [28]
    Kujawski, M., Kortylewski, M., Lee, H. et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice J. Clin. Invest., 118 (2008),pp. 3367-3377
    [29]
    Lakka, S.S., Gondi, C.S., Yanamandra, N. et al. Oncogene, 23 (2004),pp. 4681-4689
    [30]
    LeCouter, J., Zlot, C., Tejada, M. et al. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 16813-16818
    [31]
    Lee, J., Kotliarova, S., Kotliarov, Y. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines Cancer Cell, 9 (2006),pp. 391-403
    [32]
    Li, H., Han, Y., Guo, Q. et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1 J. Immunol., 182 (2009),pp. 240-249
    [33]
    Li, L., Neaves, W.B. Normal stem cells and cancer stem cells: the niche matters Cancer Res., 66 (2006),pp. 4553-4557
    [34]
    Liao, D., Luo, Y., Markowitz, D. et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model PLoS One, 4 (2009),p. e7965
    [35]
    Maier, T., Holda, J.H., Claman, H.N. Natural suppressor cells Prog. Clin. Biol. Res., 288 (1989),pp. 235-244
    [36]
    Maloy, K.J., Powrie, F. Regulatory T cells in the control of immune pathology Nat. Immunol., 2 (2001),pp. 816-822
    [37]
    Marigo, I., Dolcetti, L., Serafini, P. et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells Immunol. Rev., 222 (2008),pp. 162-179
    [38]
    Mielczarek-Puta, M., Grabon, W., Chrzanowska, A. et al. Arginase and arginine in diagnostics of patients with colorectal cancer and patients with colorectal cancer liver metastases Wspolczesna Onkologia-Contemporary Oncology, 12 (2008),pp. 51-55
    [39]
    Mira, E., Lacalle, R.A., Buesa, J.M. et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface J. Cell Sci., 117 (2004),pp. 1847-1857
    [40]
    Movahedi, K., Guilliams, M., Van den Bossche, J. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity Blood, 111 (2008),pp. 4233-4244
    [41]
    Mumenthaler, S.M., Yu, H., Tze, S. et al. Expression of arginase II in prostate cancer Int. J. Oncol., 32 (2008),pp. 357-365
    [42]
    Murdoch, C., Muthana, M., Coffelt, S.B. et al. The role of myeloid cells in the promotion of tumour angiogenesis Nat. Rev. Cancer, 8 (2008),pp. 618-631
    [43]
    Nagaraj, S., Gupta, K., Pisarev, V. et al. Nat. Med., 13 (2007),pp. 828-835
    [44]
    Ostrand-Rosenberg, S., Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer J. Immunol., 182 (2009),pp. 4499-4506
    [45]
    Oyama, T., Ran, S., Ishida, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells J. Immunol., 160 (1998),pp. 1224-1232
    [46]
    Pan, P.Y., Ozao, J., Zhou, Z. et al. Advancements in immune tolerance Adv. Drug Deliv. Rev., 60 (2008),pp. 91-105
    [47]
    Pan, P.Y., Wang, G.X., Yin, B. et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function Blood, 111 (2008),pp. 219-228
    [48]
    Pawelek, J.M., Chakraborty, A.K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev Cancer, 8 (2008),pp. 377-386
    [49]
    Pekarek, L.A., Starr, B.A., Toledano, A.Y. et al. Inhibition of tumor growth by elimination of granulocytes J. Exp. Med., 181 (1995),pp. 435-440
    [50]
    Penuelas, S., Anido, J., Prieto-Sanchez, R.M. et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma Cancer Cell, 15 (2009),pp. 315-327
    [51]
    Prendergast, G.C. Immune escape as a fundamental trait of cancer: focus on IDO Oncogene, 27 (2008),pp. 3889-3900
    [52]
    Prins, R.M., Scott, G.P., Merchant, R.E. et al. Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression Cancer Immunol. Immunother., 51 (2002),pp. 190-199
    [53]
    Reya, T., Morrison, S.J., Clarke, M.F. et al. Stem cells, cancer, and cancer stem cells Nature, 414 (2001),pp. 105-111
    [54]
    Ribechini, E., Leenen, P.J., Lutz, M.B. Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells Eur. J. Immunol., 39 (2009),pp. 3538-3551
    [55]
    Rivoltini, L., Carrabba, M., Huber, V. et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction Immunol. Rev., 188 (2002),pp. 97-113
    [56]
    Rodriguez, P.C., Quiceno, D.G., Ochoa, A.C. L-arginine availability regulates T-lymphocyte cell-cycle progression Blood, 109 (2007),pp. 1568-1573
    [57]
    Rodriguez, P.C., Zea, A.H., DeSalvo, J. et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes J. Immunol., 171 (2003),pp. 1232-1239
    [58]
    Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance Cell, 101 (2000),pp. 455-458
    [59]
    Sawanobori, Y., Ueha, S., Kurachi, M. et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice Blood, 111 (2008),pp. 5457-5466
    [60]
    Seung, L.P., Rowley, D.A., Dubey, P. et al. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc. Natl. Acad. Sci USA, 92 (1995),pp. 6254-6258
    [61]
    Shojaei, F., Ferrara, N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells Cancer Res., 68 (2008),pp. 5501-5504
    [62]
    Shojaei, F., Singh, M., Thompson, J.D. et al. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl. Acad. Sci USA, 105 (2008),pp. 2640-2645
    [63]
    Shojaei, F., Wu, X.M., Qu, X.P. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl. Acad. Sci USA, 106 (2009),pp. 6742-6747
    [64]
    Shojaei, F., Wu, X., Malik, A.K. et al. Nat. Biotechnol., 25 (2007),pp. 911-920
    [65]
    Shojaei, F., Wu, X., Zhong, C. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis Nature, 450 (2007),pp. 825-831
    [66]
    Sica, A., Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development J. Clin. Invest., 117 (2007),pp. 1155-1166
    [67]
    Sinha, P., Clements, V.K., Bunt, S.K. et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response J. Immunol., 179 (2007),pp. 977-983
    [68]
    Sinha, P., Okoro, C., Foell, D. et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells J. Immunol., 181 (2008),pp. 4666-4675
    [69]
    Taguchi, A., Blood, D.C., del Toro, G. et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases Nature, 405 (2000),pp. 354-360
    [70]
    Terabe, M., Matsui, S., Park, J.M. et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence J. Exp. Med., 198 (2003),pp. 1741-1752
    [71]
    Varga, G., Ehrchen, J., Tsianakas, A. et al. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells J. Leukoc. Biol., 84 (2008),pp. 644-650
    [72]
    Watanabe, S., Deguchi, K., Zheng, R. et al. J. Immunol., 181 (2008),pp. 3291-3300
    [73]
    Yang, L., DeBusk, L.M., Fukuda, K. et al. Cancer Cell, 6 (2004),pp. 409-421
    [74]
    Yang, L., Huang, J., Ren, X. et al. Cancer Cell, 13 (2008),pp. 23-35
    [75]
    Yang, Z., Zhang, B., Li, D. et al. PLoS One, 5 (2010),p. e8922
    [76]
    Yao, X.H., Ping, Y.F., Chen, J.H. et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR J. Pathol., 215 (2008),pp. 369-376
    [77]
    Yong, H.Y., Moon, A. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells Arch. Pharm. Res., 30 (2007),pp. 75-81
    [78]
    Yu, S.C., Bian, X.W. Enrichment of cancer stem cells based on heterogeneity of invasiveness Stem Cell Rev., 5 (2009),pp. 66-71
    [79]
    Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev Cancer, 5 (2005),pp. 263-274
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return