5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 7
Jul.  2010
Turn off MathJax
Article Contents

Induced pluripotent stem cells (iPSCs)—a new era of reprogramming

doi: 10.1016/S1673-8527(09)60060-6
More Information
  • Corresponding author: E-mail address: gaoshaorong@nibs.ac.cn (Shaorong Gao)
  • Received Date: 2010-03-22
  • Accepted Date: 2010-04-20
  • Rev Recd Date: 2010-04-09
  • Available Online: 2010-07-24
  • Publish Date: 2010-07-20
  • Embryonic stem cells (ESCs) derived from the early embryos possess two important characteristics: self-renewal and pluripotency, which make ESCs ideal seed cells that could be potentially utilized for curing a number of degenerative and genetic diseases clinically. However, ethical concerns and immune rejection after cell transplantation limited the clinical application of ESCs. Fortunately, the recent advances in induced pluripotent stem cell (iPSC) research have clearly shown that differentiated somatic cells from various species could be reprogrammed into pluripotent state by ectopically expressing a combination of several transcription factors, which are highly enriched in ESCs. This ground-breaking achievement could circumvent most of the limitations that ESCs faced. However, it remains challenging if the iPS cell lines, especially the human iPSCs lines, available are fully pluripotent. Therefore, it is prerequisite to establish a molecular standard to distinguish the better quality iPSCs from the inferior ones.
  • loading
  • [1]
    Aoi, T., Yae, K., Nakagawa, M. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells Science, 21 (2008),pp. 699-702
    [2]
    Avilion, A.A., Nicolis, S.K., Pevny, L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function Gene Dev., 17 (2003),pp. 126-140
    [3]
    Blackwell, T.K., Kretzner, L., Blackwood, E.M. et al. Sequence-specific DNA binding by the c-Myc protein Science, 250 (1990),pp. 1149-1151
    [4]
    Blackwood, E.M., Eisenman, R.N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc Science, 251 (1991),pp. 1211-1217
    [5]
    Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
    [6]
    Brambrink, T., Foreman, R., Welstead, G.G. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells Cell Stem Cell, 2 (2008),pp. 151-159
    [7]
    Cartwright, P., McLean, C., Sheppard, A. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism Development, 132 (2005),pp. 885-896
    [8]
    Chan, E.M., Ratanasirintrawoot, S., Park, I.H. et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells Nat. Biotechnol., 27 (2009),pp. 1033-1037
    [9]
    Crews, S., Barth, R., Hood, L. et al. Science, 218 (1982),pp. 1319-1321
    [10]
    Dang, D.T., Bachman, K.E., Mahatan, C.S. et al. Decreased expression of the gut-enriched Kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients FEBS Lett, 476 (2000),pp. 203-207
    [11]
    Davis, A.C., Wims, M., Spotts, G.D. et al. Gene Dev., 7 (1993),pp. 671-682
    [12]
    Dimos, J.T., Rodolfa, K.T., Niakan, K.K. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons Science, 321 (2008),pp. 1218-1221
    [13]
    Eminli, S., Foudi, A., Stadtfeld, M. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells Nat. Genet., 41 (2009),pp. 968-976
    [14]
    Evans, M.J., Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos Nature, 292 (1981),pp. 154-156
    [15]
    Hanna, J., Markoulaki, S., Schorderet, P. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency Cell, 133 (2008),pp. 250-264
    [16]
    Hanna, J., Saha, K., Pando, B. et al. Direct cell reprogramming is a stochastic process amenable to acceleration Nature, 462 (2009),pp. 595-601
    [17]
    Hong, H., Takahashi, K., Ichisaka, T. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway Nature, 460 (2009),pp. 1132-1135
    [18]
    Huangfu, D., Maehr, R., Guo, W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds Nat. Biotechnol., 26 (2008),pp. 795-797
    [19]
    Ivanova, N., Dobrin, R., Lu, R. et al. Dissecting self-renewal in stem cells with RNA interference Nature, 442 (2006),pp. 533-538
    [20]
    Jaenisch, R., Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming Cell, 132 (2008),pp. 567-582
    [21]
    Jiang, J., Chan, Y.S., Loh, Y.H. et al. A core Klf circuitry regulates self-renewal of embryonic stem cells Nat. Cell Biol., 10 (2008),pp. 353-360
    [22]
    Kang, L., Wang, J., Zhang, Y. et al. iPSCs can support full-term development of tetraploid blastocyst-complemented embryos Cell Stem Cell, 5 (2009),pp. 135-138
    [23]
    Kawamura, T., Suzuki, J., Wang, Y.V. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming Nature, 460 (2009),pp. 1140-1144
    [24]
    Kim, D., Kim, C.H., Moon, J.I. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins Cell Stem Cell, 4 (2009),pp. 472-476
    [25]
    Kou, Z., Kang, L., Yuan, Y. et al. Mice cloned from induced pluripotent stem cells (iPSC) Biol. Reprod. (2010)
    [26]
    Liao, J., Wu, Z., Wang, Y. et al. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors Cell Res., 18 (2008),pp. 600-603
    [27]
    Marson, A., Foreman, R., Chevalier, B. et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency Cell Stem Cell, 3 (2008),pp. 132-135
    [28]
    Meyer, N., Penn, L.Z. Reflecting on 25 years with MYC Nat. Rev. Cancer, 8 (2008),pp. 976-990
    [29]
    Mikkelsen, T.S., Hanna, J., Zhang, X. et al. Dissecting direct reprogramming through integrative genomic analysis Nature, 454 (2008),pp. 49-55
    [30]
    Nakagawa, M., Koyanagi, M., Tanabe, K. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts Nat. Biotechnol., 26 (2008),pp. 101-106
    [31]
    Nichols, J., Zevnik, B., Anastassiadis, K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 Cell, 95 (1998),pp. 379-391
    [32]
    Niwa, H., Miyazaki, J., Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells Nat. Genet., 24 (2000),pp. 372-376
    [33]
    Okamoto, K., Okazawa, H., Okuda, A. et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells Cell, 60 (1990),pp. 461-472
    [34]
    Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline-competent induced pluripotent stem cells Nature, 448 (2007),pp. 313-317
    [35]
    Okita, K., Nakagawa, M., Hyenjong, H. et al. Generation of mouse induced pluripotent stem cells without viral vectors Science, 322 (2008),pp. 949-953
    [36]
    Pesce, M., Wang, X., Wolgemuth, D.J. et al. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation Mech. Develop., 71 (1998),pp. 89-98
    [37]
    Rosner, M.H., Vigano, M.A., Ozato, K. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo Nature, 345 (1990),pp. 686-692
    [38]
    Scholer, H.R., Hatzopoulos, A.K., Balling, R. et al. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor EMBO J., 8 (1989),pp. 2543-2550
    [39]
    Scholer, H.R., Ruppert, S., Suzuki, N. et al. New type of POU domain in germ line-specific protein Oct-4 Nature, 344 (1990),pp. 435-439
    [40]
    Segre, J.A., Bauer, C., Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin Nat. Genet., 22 (1999),pp. 356-360
    [41]
    Shields, J.M., Yang, V.W. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor Nucleic Acids Res., 26 (1998),pp. 796-802
    [42]
    Shields, J.M., Christy, R.J., Yang, V.W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest J. Biol. Chem., 271 (1996),pp. 20009-20017
    [43]
    Soldner, F., Hockemeyer, D., Beard, C. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors Cell, 136 (2009),pp. 964-977
    [44]
    Stadtfeld, M., Maherali, N., Breault, D.T. et al. Defining molecular cornerstones during fibroblast to iPSCs reprogramming in mouse Cell Stem Cell, 2 (2008),pp. 230-240
    [45]
    Stadtfeld, M., Nagaya, M., Utikal, J. et al. Induced pluripotent stem cells generated without viral integration Science, 322 (2008),pp. 945-949
    [46]
    Tada, M., Takahama, Y., Abe, K. et al. Curr. Biol., 11 (2001),pp. 1553-1558
    [47]
    Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell, 126 (2006),pp. 663-676
    [48]
    Ton-That, H., Kaestner, K.H., Shields, J.M. et al. Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis FEBS Lett, 419 (1997),pp. 239-243
    [49]
    Wernig, M., Meissner, A., Foreman, R. et al. Nature, 448 (2007),pp. 318-324
    [50]
    Wilmut, I., Schnieke, A.E., McWhir, J. et al. Viable offspring derived from fetal and adult mammalian cells Nature, 385 (1997),pp. 810-813
    [51]
    Wood, H.B., Episkopou, V. Mech. Develop., 86 (1999),pp. 197-201
    [52]
    Ye, Z., Zhan, H., Mali, P. et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders Blood, 114 (2009),pp. 5473-5480
    [53]
    Yuan, H., Corbi, N., Basilico, C. et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3 Gene Dev., 9 (1995),pp. 2635-2645
    [54]
    Zhang, W., Geiman, D.E., Shields, J.M. et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter J. Biol. Chem., 275 (2000),pp. 18391-18398
    [55]
    Zhao, X.Y., Li, W., Lv, Z. et al. iPSCs produce viable mice through tetraploid complementation Nature, 461 (2009),pp. 86-90
    [56]
    Zhou, H., Wu, S., Joo, J.Y. et al. Generation of induced pluripotent stem cells using recombinant proteins Cell Stem Cell, 4 (2009),pp. 381-384
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return