5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 6
Jun.  2010
Turn off MathJax
Article Contents

Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis

doi: 10.1016/S1673-8527(09)60057-6
More Information
  • Corresponding author: E-mail address: xcwang@cau.edu.cn (Xuechen Wang)
  • Received Date: 2010-01-09
  • Accepted Date: 2010-05-07
  • Rev Recd Date: 2010-04-29
  • Available Online: 2010-07-01
  • Publish Date: 2010-06-20
  • Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Alexandersson, E., Fraysse, L., Sjovall-Larsen, S. et al. Whole gene family expression and drought stress regulation of aquaporins Plant Mol. Biol., 59 (2005),pp. 469-484
    [2]
    Borges, F., Gomes, G., Gardner, R. et al. Plant Physiol., 148 (2008),pp. 1168-1181
    [3]
    Camacho-Cristobal, J.J., Rexach, J., Gonzalez-Fontes, A. Boron in plants: deficiency and toxicity J. Integr. Plant Biol., 50 (2008),pp. 1247-1255
    [4]
    Cartwright, B., Zarcinas, B., Mayfield, A. Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia Aust. J. Soil Res., 22 (1984),pp. 261-272
    [5]
    Charrier, B., Champion, A., Henry, Y. et al. Plant Physiol., 130 (2002),pp. 577-590
    [6]
    Chaumont, F., Moshelion, M., Daniels, M.J. Regulation of plant aquaporin activity Biol. Cell, 97 (2005),pp. 749-764
    [7]
    Chen, H., Nelson, R.S., Sherwood, J.L. Biotechniques, 16 (1994),pp. 664-668
    [8]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [9]
    Delhaize, E., Gruber, B.D., Pittman, J.K. et al. Plant J., 51 (2007),pp. 198-210
    [10]
    Haydon, M.J., Cobbett, C.S. Plant Physiol., 143 (2007),pp. 1705-1719
    [11]
    Kato, Y., Miwa, K., Takano, J. et al. Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel Plant Cell Physiol., 50 (2009),pp. 58-66
    [12]
    Koshiba, T., Kobayashi, M., Matoh, T. Boron nutrition of tobacco BY-2 cells. V. oxidative damage is the major cause of cell death induced by boron deprivation Plant Cell Physiol., 50 (2009),pp. 26-36
    [13]
    Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods, 25 (2001),pp. 402-408
    [14]
    Miwa, K., Takano, J., Fujiwara, T. Plant J., 46 (2006),pp. 1084-1091
    [15]
    Miwa, K., Takano, J., Omori, H. et al. Plants tolerant of high boron levels Science, 318 (2007),p. 1417
    [16]
    Nakagawa, Y., Hanaoka, H., Kobayashi, M. et al. Plant Cell, 19 (2007),pp. 2624-2635
    [17]
    Nelson, B.K., Cai, X., Nebenfuhr, A. Plant J., 51 (2007),pp. 1126-1136
    [18]
    Noguchi, K., Yasumori, M., Imai, T. et al. Plant Physiol., 115 (1997),pp. 901-906
    [19]
    Nozawa, A., Miwa, K., Kobayashi, M. et al. Biosci. Biotechnol. Biochem., 70 (2006),pp. 1724-1730
    [20]
    O'Neill, M.A., Ishii, T., Albersheim, P. et al. Rhamnogalacturonan II: structure and function of a borate cross- linked cell wall pectic polysaccharide Annu. Rev. Plant Biol., 55 (2004),pp. 109-139
    [21]
    Sheen, J. Plant Physiol., 127 (2001),pp. 1466-1475
    [22]
    Soto, G., Alleva, K., Mazzella, M.A. et al. FEBS Lett., 582 (2008),pp. 4077-4082
    [23]
    Sutton, T., Baumann, U., Hayes, J. et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification Science, 318 (2007),pp. 1446-1449
    [24]
    Takano, J., Miwa, K., Fujiwara, T. Boron transport mechanisms: collaboration of channels and transporters Trends Plant Sci., 13 (2008),pp. 451-457
    [25]
    Takano, J., Wada, M., Ludewig, U. et al. Plant Cell, 18 (2006),pp. 1498-1509
    [26]
    Takano, J., Noguchi, K., Yasumori, M. et al. Nature, 420 (2002),pp. 337-340
    [27]
    Tanaka, M., Fujiwara, T. Physiological roles and transport mechanisms of boron: perspectives from plants Pflugers Arch., 456 (2008),pp. 671-677
    [28]
    Tanaka, M., Wallace, I.S., Takano, J. et al. Plant Cell, 20 (2008),pp. 2860-2875
    [29]
    Xu, J., Li, H.D., Chen, L.Q. et al. Cell, 125 (2006),pp. 1347-1360
    [30]
    Yau, S.K., Ryan, J. Boron toxicity tolerance in crops: a viable alternative to soil amelioration Crop Sci., 48 (2008),pp. 854-865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return