[1] |
Akao, Y., Nakagawa, Y., Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells Biol. Pharm. Bull., 29 (2006),pp. 903-906
|
[2] |
Ambros, V. The evolution of our thinking about microRNAs Nat. Med., 14 (2008),pp. 1036-1040
|
[3] |
Arndt, G.M., Dossey, L., Cullen, L.M. et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer BMC Cancer, 9 (2009),p. 17
|
[4] |
Baek, D., Villen, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
|
[5] |
Bandres, E., Agirre, X., Bitarte, N. et al. Epigenetic regulation of microRNA expression in colorectal cancer Int. J. Cancer, 125 (2009),pp. 2737-2743
|
[6] |
Bandres, E., Bitarte, N., Arias, F. et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells Clin. Cancer Res., 15 (2009),pp. 2281-2290
|
[7] |
Bandres, E., Cubedo, E., Agirre, X. et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues Mol. Cancer, 5 (2006),p. 10
|
[8] |
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[9] |
Bommer, G.T., Gerin, I., Feng, Y. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes Curr. Biol., 17 (2007),pp. 1298-1307
|
[10] |
Bonci, D., Coppola, V., Musumeci, M. et al. Nat. Med., 14 (2008),pp. 1271-1277
|
[11] |
Boyle, P., Levin, B.
|
[12] |
Brown, B.D., Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications Nat. Rev. Genet., 10 (2009),pp. 578-585
|
[13] |
Brown, B.D., Venneri, M.A., Zingale, A. et al. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer Nat. Med., 12 (2006),pp. 585-591
|
[14] |
Brown, B.D., Gentner, B., Cantore, A. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state Nat. Biotechnol., 25 (2007),pp. 1457-1467
|
[15] |
Burk, U., Schubert, J., Wellner, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells EMBO Rep., 9 (2008),pp. 582-589
|
[16] |
Care, A., Catalucci, D., Felicetti, F. et al. MicroRNA-133 controls cardiac hypertrophy Nat. Med., 13 (2007),pp. 613-618
|
[17] |
Chen, X., Guo, X., Zhang, H. et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis Oncogene, 28 (2009),pp. 1385-1392
|
[18] |
Dews, M., Homayouni, A., Yu, D. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster Nat. Genet., 38 (2006),pp. 1060-1065
|
[19] |
Diosdado, B., van de Wiel, M., Droste, J. et al. Br. J. Cancer, 101 (2009),pp. 707-714
|
[20] |
Ebert, M.S., Neilson, J.R., Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells Nat. Meth., 4 (2007),pp. 721-726
|
[21] |
Edge, R.E., Falls, T.J., Brown, C.W. et al. A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication Mol. Ther., 16 (2008),pp. 1437-1443
|
[22] |
Fabbri, M., Garzon, R., Cimmino, A. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15805-15810
|
[23] |
Faber, C., Kirchner, T., Hlubek, F. The impact of microRNAs on colorectal cancer Virchows Arch., 454 (2009),pp. 359-367
|
[24] |
Fang, W., Lin, C., Zhang, H. et al. Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China J. Int. Med. Res., 35 (2007),pp. 716-723
|
[25] |
Fodde, R., Smits, R., Clevers, H. APC, signal transduction and genetic instability in colorectal cancer Nat. Rev. Cancer, 1 (2001),pp. 55-67
|
[26] |
Gentner, B., Schira, G., Giustacchini, A. et al. Nat. Meth., 6 (2009),pp. 63-66
|
[27] |
Gregory, R.I., Shiekhattar, R. MicroRNA biogenesis and cancer Cancer Res., 65 (2005),pp. 3509-3512
|
[28] |
Guo, C.G., Sah, J.F., Beard, L. et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers Genes Chromosomes Cancer, 47 (2008),pp. 939-946
|
[29] |
He, X.-X., Chen, K., Yang, J. et al. Macrophage migration inhibitory factor promotes colorectal cancer Mol. Med., 15 (2009),pp. 1-10
|
[30] |
Huang, Z.M., Yang, J., Shen, X.Y. et al. MicroRNA expression profile in non-cancerous colonic tissue associated with lymph node metastasis of colon cancer J. Dig. Dis., 10 (2009),pp. 188-194
|
[31] |
Hudson, J.D., Shoaibi, M.A., Maestro, R. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity J. Exp. Med., 190 (1999),pp. 1375-1382
|
[32] |
Jiang, S.-X., Wang, X.-S., Geng, C.-H. et al. Altering trend of clinical characteristics of colorectal cancer: a report of 3,607 cases Chin. J. Cancer, 28 (2009),pp. 54-56
|
[33] |
Korpal, M., Lee, E.S., Hu, G.H. et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 J. Biol. Chem., 283 (2008),pp. 14910-14914
|
[34] |
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. et al. Identification of novel genes coding for small expressed RNAs Science, 294 (2001),pp. 853-858
|
[35] |
Lanza, G., Ferracin, M., Gafa, R. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer Mol. Cancer, 6 (2007),p. 11
|
[36] |
Lau, N.C., Lim, L.P., Weinstein, E.G. et al. Science, 294 (2001),pp. 858-862
|
[37] |
Lee, H., Rhee, H., Kang, H.J. et al. Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas Am. J. Clin. Pathol., 129 (2008),pp. 772-779
|
[38] |
Lee, R.C., Ambros, V. Science, 294 (2001),pp. 862-864
|
[39] |
Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
|
[40] |
Legendre, H., Decaestecker, C., Nagy, N. et al. Prognostic values of galectin-3 and the macrophage migration inhibitory factor (MIF) in human colorectal cancers Mod. Pathol., 16 (2003),pp. 491-504
|
[41] |
Lu, J., Getz, G., Miska, E.A. et al. MicroRNA expression profiles classify human cancers Nature, 435 (2005),pp. 834-838
|
[42] |
Michael, M.Z., O'Connor, S.M., Pellekaan, N.G.V. et al. Reduced accumulation of specific microRNAs in colorectal neoplasia Mol. Cancer Res., 1 (2003),pp. 882-891
|
[43] |
Miyaki, M., Iijima, T., Kimura, J. et al. Cancer Res., 59 (1999),pp. 4506-4509
|
[44] |
Motoyama, K., Inoue, H., Takatsuno, Y. et al. Over- and under-expressed microRNAs in human colorectal cancer Int. J. Oncol., 34 (2009),pp. 1069-1075
|
[45] |
Nagel, R., le Sage, C., Diosdado, B. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer Cancer Res., 68 (2008),pp. 5795-5802
|
[46] |
Nakajima, G., Hayashi, K., Xi, Y. et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer Cancer Genomics Proteomics, 3 (2006),pp. 317-324
|
[47] |
Ng, E.K.O., Tsang, W.P., Ng, S.S.M. et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer Br. J. Cancer, 101 (2009),pp. 699-706
|
[48] |
Ohkawara, T., Nishihira, J., Takeda, H. et al. Pathophysiological roles of macrophage migration inhibitory factor in gastrointestinal, hepatic, and pancreatic disorders J. Gastroenterol., 40 (2005),pp. 117-122
|
[49] |
Schepeler, T., Reinert, J.T., Ostenfeld, M.S. et al. Diagnostic and prognostic microRNAs in stage II colon cancer Cancer Res., 68 (2008),pp. 6416-6424
|
[50] |
Scherr, M., Venturini, L., Battmer, K. et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function Nucleic Acids Res., 35 (2007),p. 22
|
[51] |
Schetter, A.J., Leung, S.Y., Sohn, J.J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma J. Am. Med. Assoc., 299 (2008),pp. 425-436
|
[52] |
Schimanski, C.C., Frerichs, K., Rahman, F. et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells World J. Gastroenterol., 15 (2009),pp. 2089-2096
|
[53] |
Selbach, M., Schwanhausser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
|
[54] |
Shell, S., Park, S.M., Radiabi, A.R. et al. Let-7 expression defines two differentiation stages of cancer Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11400-11405
|
[55] |
Singh, S.K., Bhadra, M.P., Girschick, H.J. et al. MicroRNAs—micro in size but macro in function FEBS J., 275 (2008),pp. 4929-4944
|
[56] |
Slaby, O., Svoboda, M., Fabian, P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer Oncology, 72 (2007),pp. 397-402
|
[57] |
Spaderna, S., Schmalhofer, O., Hlubek, F. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer Gastroenterology, 131 (2006),pp. 830-840
|
[58] |
Spaderna, S., Schmalhofer, O., Wahlbuhl, M. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer Cancer Res., 68 (2008),pp. 537-544
|
[59] |
Sparks, A.B., Morin, P.J., Vogelstein, B. et al. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer Cancer Res., 58 (1998),pp. 1130-1134
|
[60] |
Steinbach, G., Lynch, P.M., Phillips, R.K.S. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis N. Engl. J. Med., 342 (2000),pp. 1946-1952
|
[61] |
Strillacci, A., Griffoni, C., Sansone, P. et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells Exp. Cell Res., 315 (2009),pp. 1439-1447
|
[62] |
Sureban, S.M., May, R., Ramalingam, S. et al. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a microRNA-dependent mechanism Gastroenterology, 137 (2009),pp. 649-659
|
[63] |
Suzuki, T., Sakurai, F., Nakamura, S.I. et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy Mol. Ther., 16 (2008),pp. 1719-1726
|
[64] |
Tay, Y., Zhang, J.Q., Thomson, A.M. et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation Nature, 455 (2008),pp. 1124-1128
|
[65] |
Tazawa, H., Tsuchiya, N., Izumiya, M. et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15472-15477
|
[66] |
Thiery, J.P., Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 131-142
|
[67] |
Toyota, M., Suzuki, H., Sasaki, Y. et al. Cancer Res., 68 (2008),pp. 4123-4132
|
[68] |
Tsang, W.P., Kwok, T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3 Apoptosis, 13 (2008),pp. 1215-1222
|
[69] |
Tsujii, M., Kawano, S., DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 3336-3340
|
[70] |
Varambally, S., Cao, Q., Mani, R.S. et al. Science, 322 (2008),pp. 1695-1699
|
[71] |
Wang, C.J., Zhou, Z.G., Wang, L. et al. Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer Dis. Markers, 26 (2009),pp. 27-34
|
[72] |
Wang, P., Zou, F.D., Zhang, X.D. et al. MicroRNA-21 megatively regulates Cdc25A and cell cycle progression in colon cancer cells Cancer Res., 69 (2009),pp. 8157-8165
|
[73] |
Wang, X., Lam, E.K.Y., Zhang, J.B. et al. MicroRNA-122a functions as a novel tumor suppressor downstream of adenomatous polyposis coli in gastrointestinal cancers Biochem. Biophys. Res. Commun., 387 (2009),pp. 376-380
|
[74] |
Wellner, U., Schubert, J., Burk, U.C. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs Nat. Cell Biol., 11 (2009),pp. 1487-1495
|
[75] |
Wilson, J.M., Coletta, P.L., Cuthbert, R.J. et al. Macrophage migration inhibitory factor promotes intestinal tumorigenesis Gastroenterology, 129 (2005),pp. 1485-1503
|
[76] |
Xi, Y., Formentini, A., Chien, M. et al. Prognostic values of microRNAs in colorectal cancer Biomark Insights, 2 (2006),pp. 113-121
|
[77] |
Xu, T., Zhu, Y., Xiong, Y.J. et al. MicroRNA-195 suppresses tumorigenicity and regulates G(1)/S transition of human hepatocellular carcinoma cells Hepatology, 50 (2009),pp. 113-121
|
[78] |
Yamakuchi, M., Ferlito, M., Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13421-13426
|
[79] |
Yasasever, V., Camlica, H., Duranyildiz, D. et al. Macrophage migration inhibitory factor in cancer Cancer Investig., 25 (2007),pp. 715-719
|
[80] |
Ylosmaki, E., Hakkarainen, T., Hemminki, A. et al. Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA J. Virol., 82 (2008),pp. 11009-11015
|
[81] |
Zhao, H.Y., Ooyama, A., Yamamoto, M. et al. Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells Cancer Lett., 270 (2008),pp. 156-163
|