5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 5
May  2010
Turn off MathJax
Article Contents

Natural selection maintains the transcribed LTR retrotransposons in Nosema bombycis

doi: 10.1016/S1673-8527(09)60048-5
More Information
  • Corresponding author: E-mail address: zyzhou@swu.edu.cn (Zeyang Zhou)
  • Received Date: 2010-01-30
  • Accepted Date: 2010-04-20
  • Rev Recd Date: 2010-03-30
  • Available Online: 2010-05-31
  • Publish Date: 2010-05-20
  • Eight intact LTR retrotransposons (Nbr1–Nbr8) have been previously characterized from the genome of Nosema bombycis, a eukaryotic parasite with a compact and reduced genome. Here we describe six novel transcribed Nbr elements (Nbr9–Nbr14) identified through either cDNA library or RT-PCR. Like previously determined ones, all of them belong to the Ty3/Gypsy superfamily. Retrotransposon diversity and incomplete domains with insertions (Nbr12), deletions (Nbr11) and in-frame stop codons in coding regions (Nbr9) were detected, suggesting that both defective and loss events of LTR retrotransposon have happened in N. bombycis genome. Analysis of selection showed that strong purifying selection acts on all elements except Nbr11. This implies that selective pressure keeps both these Nbrs and their functions in genome. Interestingly, Nbr11 is under positive selection and some positively selected codons were identified, indicating that new functionality might have evolved in the Nbr11 retrotransposon. Unlike other transposable elements, Nbr11 has integrated into a conserved syntenic block and probably resulted in the inversion of both flanking regions. This demonstrates that transposable element is an important factor for the reshuffling and evolution of their host genomes, and may be maintained under natural selection.
  • loading
  • [1]
    Abrahamsen, M.S., Templeton, T.J., Enomoto, S. et al. Science, 304 (2004),pp. 441-445
    [2]
    Akiyoshi, D.E., Morrison, H.G., Lei, S. et al. PLoS Pathog., 5 (2009),p. e1000261
    [3]
    Altschul, S.F., Gish, W., Miller, W. et al. Basic local alignment search tool J. Mol. Biol., 215 (1990),pp. 403-410
    [4]
    Aparicio, S., Chapman, J., Stupka, E. et al. Science, 297 (2002),pp. 1301-1310
    [5]
    Arkhipova, I.R., Pyatkov, K.I., Meselson, M. et al. Retroelements containing introns in diverse invertebrate taxa Nat. Genet., 33 (2003),pp. 123-124
    [6]
    Boeke, J.D., Stoye, J.P.
    [7]
    Bringaud, F., Ghedin, E., Blandin, G. et al. Mol. Biol. Evol., 145 (2006),pp. 158-170
    [8]
    Capy, P., Langin, T., Anxolabehere, D. et al.
    [9]
    Carlton, J.M., Angiuoli, S.V., Suh, B.B. et al. Nature, 419 (2002),pp. 512-519
    [10]
    Cook, J.M., Martin, J., Lewin, A. et al. Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons Insect Mol. Biol., 9 (2000),pp. 109-117
    [11]
    Crollius, H.R., Jaillon, O., Dasilva, C. et al. Genome Res., 10 (2000),pp. 939-949
    [12]
    DeMarco, R., Kowaltowski, A.T., Machado, A.A. et al. J. Virol., 78 (2004),pp. 2967-2978
    [13]
    Eickbush, T.H., Malik, H.S.
    [14]
    Eickbush, T.H., Furano, A.V. Fruit flies and humans respond differently to retrotransposons Curr. Opin. Genet. Dev., 12 (2002),pp. 669-674
    [15]
    Gardner, M.J., Hall, N., Fung, E. et al. Nature, 419 (2002),pp. 498-511
    [16]
    Grandbastien, M.A. Retroelements in higher plants Trends Genet., 8 (1992),pp. 103-108
    [17]
    Katinka, M.D., Duprat, S., Cornillot, E. et al. Nature, 414 (2001),pp. 450-453
    [18]
    Kazazian, H.H. Mobile elements: drivers of genome evolution Science, 303 (2004),pp. 1626-1632
    [19]
    Laha, T., Loukas, A., Smyth, D.J. et al. Int. J. Parasitol., 34 (2004),pp. 1365-1375
    [20]
    Liu, J.B., Pan, G.Q., Cheng, D.J. et al. Acta Sericologica Sinica, 30 (2004),pp. 363-366
    [21]
    Ma, J., Devos, K.M., Bennetzen, J.L. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice Genome Res., 14 (2004),pp. 860-869
    [22]
    Mount, S.M., Rubin, G.M. Mol. Cell Biol., 5 (1985),pp. 1630-1638
    [23]
    Nei, M.
    [24]
    Orgel, L.E., Crick, F.H.C. Selfish DNA: the ultimate parasite Nature, 284 (1980),pp. 604-607
    [25]
    Petrov, D.A. Evolution of genome size: new approaches to an old problem Trends Genet., 17 (2001),pp. 23-28
    [26]
    Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods Bioinformatics, 19 (2003),pp. 2496-2497
    [27]
    Slamovits, C.H., Fast, N.M., Law, J.S. et al. Genome compaction and stability in microsporidian intracellular parasites Curr. Biol., 14 (2004),pp. 891-896
    [28]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [29]
    Thompson, J.D., Gibson, T.J., Plewniak, F. et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res., 25 (1997),pp. 4876-4882
    [30]
    Toh, H., Kikuno, R., Hayashida, H. et al. EMBO J., 4 (1985),pp. 1267-1272
    [31]
    Volff, J.N., Hornung, U., Schartl, M. Mol. Genet. Genomics, 265 (2001),pp. 711-720
    [32]
    Volff, J.N., Bouneau, L., Ozouf-Costaz, C. et al. Diversity of retrotransposable elements in compact pufferfish genomes Trends Genet., 19 (2003),pp. 674-678
    [33]
    Volff, J.N., Lehrach, H., Reinhardt, R. et al. Mol. Biol. Evol., 21 (2004),pp. 2022-2033
    [34]
    Whitcomb, J.M., Hughes, S.H. Retroviral reverse transcription and integration: progress and problems Annu. Rev. Cell Biol., 8 (1992),pp. 275-306
    [35]
    Williams, B.A.P., Lee, R.C.H., Becnel, J.J. et al. BMC Genomics, 9 (2008),p. 200
    [36]
    Xiong, Y., Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences EMBO J., 9 (1990),pp. 3353-3362
    [37]
    Xu, J., Pan, G., Fang, L. et al. Int. J. Parasitol., 36 (2006),pp. 1049-1056
    [38]
    Xu, P., Widmer, G., Wang, Y. et al. Nature, 431 (2004),pp. 1107-1112
    [39]
    Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood Bioinformatics (Oxford, England), 13 (1997),pp. 555-556
    [40]
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
    [41]
    Yang, Z., Wong, W.S.W., Nielsen, R. Bayes empirical bayes inference of amino acid sites under positive selection Mol. Biol. Evol., 22 (2005),pp. 1107-1118
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return