[1] |
Bergemann, T.L. (2004). Image Analysis and Signal Extraction from cDNA Microarrays. Dissertation (University of Washington), pp.120–130.
|
[2] |
Bergemann, T.L., Zhao, L.P. Signal quality measurements for cDNA microarray data IEEE/ACM Trans. Comput. Biol. Bioinform., 9 (2008),p. 1
|
[3] |
Bergemann, T.L., Laws, R.J., Quiaoit, F. et al. A statistically driven approach for image segmentation and signal extraction in cDNA microarrays J. Comput. Biol., 11 (2004),pp. 695-713
|
[4] |
Dondrup, M., Hueser, A.T., Mertens, D. et al. An evaluation framework for statistical tests on microarray data J. Biotechnol., 140 (2009),pp. 18-26
|
[5] |
Efron, B., Tibshirani, R., Storey, J.D. et al. Empirical Bayes analysis of a microarray experiment J. Amer. Stat. Assoc., 96 (2001),pp. 1151-1160
|
[6] |
Eisenstein, M. Quality control Nature, 442 (2006),pp. 1067-1170
|
[7] |
Glasbey, C.A., Khondoker, M.R. Efficiency of functional regression estimators for combining multiple laser scans of cDNA microarrays Biom. J., 51 (2009),pp. 45-55
|
[8] |
Golkari, S., Gilbert, J., Ban, T. et al. QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs Genome, 52 (2009),pp. 409-418
|
[9] |
Handran, S., Zhai, J.Y.
|
[10] |
Hastie, T., Tibshirani, R., Friedman, J.
|
[11] |
Imbeaud, S., Auffray, C. The 39 steps in gene expression profiling: critical issues and proposed best practices for microarray experiments Drug Discov. Today, 10 (2005),pp. 1175-1182
|
[12] |
Lee, M.T.
|
[13] |
Liang, K.Y., Zeger, S.L. Longitudinal data analysis for discrete and continuous outcomes Biometrics, 42 (1986),pp. 121-130
|
[14] |
Liu, X., Lin, K.K., Andersen, B. et al. Including probe-level uncertainty in model-based gene expression clustering BMC Bioinformatics, 8 (2007),p. 98
|
[15] |
Moinfar, F. Is ‘basal-like’ carcinoma of the breast a distinct clinicopathological entity? A critical review with cautionary notes Pathobiology, 75 (2008),pp. 119-131
|
[16] |
Murie, C., Woody, O., Lee, A.Y. et al. Comparison of small n statistical tests of differential expression applied to microarrays BMC Bioinformatics, 10 (2009),p. 45
|
[17] |
Patterson, T.A., Lobenhofer, E.K., Fulmer-Smentek, S.B. et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project Nat. Biotechnol., 24 (2006),pp. 1140-1150
|
[18] |
Paustian, M.L., Zhu, X., Sreevatsan, S. et al. BMC Genomics, 9 (2008),p. 135
|
[19] |
Pitman, E.J.G. (1948). Nonparametric statistical inference. Lecture Notes (Institute of Statistics, University of North Carolina, Chapel Hill).
|
[20] |
R Development Core Team (2009). R Foundation for Statistical Computing. (Vienna, Austria: {ISBN} 3-900051-07-0) URL: http://www.R-project.org.
|
[21] |
Ritchie, M.E., Diyagama, D., Neilson, J. et al. Empirical array quality weights in the analysis of microarray data BMC Bioinformatics, 7 (2006),pp. 261-276
|
[22] |
Schena, M., Shalon, D., Davis, R.W. et al. Quantitative monitering of gene expression patterns with a complementary DNA microarray Science, 270 (1995),pp. 467-470
|
[23] |
Stangegaard, M. Gene expression analysis using Agilent DNA microarrays Methods Mol. Biol., 529 (2009),pp. 133-145
|
[24] |
Storey, J.D., Taylor, J.E., Siegmund, D. Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach J. R. Stat. Soc. Series B Stat. Methodol., 66 (2004),pp. 187-205
|
[25] |
Tran, P.H., Peiffer, D.A., Shin, Y. Microarray optimizations: increasing spot accuracy and automated identification of true microarray signals Nucleic Acids Res., 30 (2002),pp. E54-E62
|
[26] |
Wang, M., Qi, X., Zhao, S. et al. BMC Genomics, 10 (2009),p. 215
|
[27] |
Wang, Y.H., Bower, N.I., Reverter, A. et al. Gene expression patterns during intramuscular fat development in cattle J. Anim. Sci., 87 (2009),pp. 119-130
|
[28] |
Yang, Y. Use of genomic DNA as reference in DNA microarrays Methods Mol. Biol., 544 (2009),pp. 439-450
|
[29] |
Zhao, L.P., Prentice, R., Breeden, L. Statistical modeling of large microarray data sets to identify stimulus-response profiles Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5631-5636
|