5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 4
Apr.  2010
Turn off MathJax
Article Contents

Use of signal quality measurements to gain efficiency in the analysis of cDNA microarray data

doi: 10.1016/S1673-8527(09)60045-X
More Information
  • Corresponding author: E-mail address: berge319@umn.edu (Tracy L Bergemann)
  • Received Date: 2009-10-27
  • Accepted Date: 2010-02-18
  • Rev Recd Date: 2010-01-19
  • Available Online: 2010-05-01
  • Publish Date: 2010-04-20
  • This research provides a new way to measure error in microarray data in order to improve gene expression analysis. Microarray data contains many sources of error. In order to glean information about mRNA expression levels, the true signal must first be segregated from noise. This research focuses on the variation that can be captured at the spot level in cDNA microarray images. Variation at other levels, due to differences at the array, dye, and block levels, can be corrected for by a variety of existing normalization procedures. Two signal quality estimates that capture the reliability of each spot printed on a microarray are described. A parametric estimate of within-spot variance, referred to here as σ2spot, assumes that pixels follow a normal distribution and are spatially correlated. A non-parametric estimate of error, called the mean square prediction error (MSPE), assumes that spots of high quality possess pixels that are similar to their neighbors. This paper will provide a framework to use either spot quality measure in downstream analysis, specifically as weights in regression models. Using these spot quality estimates as weights can result in greater efficiency, in a statistical sense, when modeling microarray data.
  • loading
  • [1]
    Bergemann, T.L. (2004). Image Analysis and Signal Extraction from cDNA Microarrays. Dissertation (University of Washington), pp.120–130.
    [2]
    Bergemann, T.L., Zhao, L.P. Signal quality measurements for cDNA microarray data IEEE/ACM Trans. Comput. Biol. Bioinform., 9 (2008),p. 1
    [3]
    Bergemann, T.L., Laws, R.J., Quiaoit, F. et al. A statistically driven approach for image segmentation and signal extraction in cDNA microarrays J. Comput. Biol., 11 (2004),pp. 695-713
    [4]
    Dondrup, M., Hueser, A.T., Mertens, D. et al. An evaluation framework for statistical tests on microarray data J. Biotechnol., 140 (2009),pp. 18-26
    [5]
    Efron, B., Tibshirani, R., Storey, J.D. et al. Empirical Bayes analysis of a microarray experiment J. Amer. Stat. Assoc., 96 (2001),pp. 1151-1160
    [6]
    Eisenstein, M. Quality control Nature, 442 (2006),pp. 1067-1170
    [7]
    Glasbey, C.A., Khondoker, M.R. Efficiency of functional regression estimators for combining multiple laser scans of cDNA microarrays Biom. J., 51 (2009),pp. 45-55
    [8]
    Golkari, S., Gilbert, J., Ban, T. et al. QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs Genome, 52 (2009),pp. 409-418
    [9]
    Handran, S., Zhai, J.Y.
    [10]
    Hastie, T., Tibshirani, R., Friedman, J.
    [11]
    Imbeaud, S., Auffray, C. The 39 steps in gene expression profiling: critical issues and proposed best practices for microarray experiments Drug Discov. Today, 10 (2005),pp. 1175-1182
    [12]
    Lee, M.T.
    [13]
    Liang, K.Y., Zeger, S.L. Longitudinal data analysis for discrete and continuous outcomes Biometrics, 42 (1986),pp. 121-130
    [14]
    Liu, X., Lin, K.K., Andersen, B. et al. Including probe-level uncertainty in model-based gene expression clustering BMC Bioinformatics, 8 (2007),p. 98
    [15]
    Moinfar, F. Is ‘basal-like’ carcinoma of the breast a distinct clinicopathological entity? A critical review with cautionary notes Pathobiology, 75 (2008),pp. 119-131
    [16]
    Murie, C., Woody, O., Lee, A.Y. et al. Comparison of small n statistical tests of differential expression applied to microarrays BMC Bioinformatics, 10 (2009),p. 45
    [17]
    Patterson, T.A., Lobenhofer, E.K., Fulmer-Smentek, S.B. et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project Nat. Biotechnol., 24 (2006),pp. 1140-1150
    [18]
    Paustian, M.L., Zhu, X., Sreevatsan, S. et al. BMC Genomics, 9 (2008),p. 135
    [19]
    Pitman, E.J.G. (1948). Nonparametric statistical inference. Lecture Notes (Institute of Statistics, University of North Carolina, Chapel Hill).
    [20]
    R Development Core Team (2009). R Foundation for Statistical Computing. (Vienna, Austria: {ISBN} 3-900051-07-0) URL: http://www.R-project.org.
    [21]
    Ritchie, M.E., Diyagama, D., Neilson, J. et al. Empirical array quality weights in the analysis of microarray data BMC Bioinformatics, 7 (2006),pp. 261-276
    [22]
    Schena, M., Shalon, D., Davis, R.W. et al. Quantitative monitering of gene expression patterns with a complementary DNA microarray Science, 270 (1995),pp. 467-470
    [23]
    Stangegaard, M. Gene expression analysis using Agilent DNA microarrays Methods Mol. Biol., 529 (2009),pp. 133-145
    [24]
    Storey, J.D., Taylor, J.E., Siegmund, D. Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach J. R. Stat. Soc. Series B Stat. Methodol., 66 (2004),pp. 187-205
    [25]
    Tran, P.H., Peiffer, D.A., Shin, Y. Microarray optimizations: increasing spot accuracy and automated identification of true microarray signals Nucleic Acids Res., 30 (2002),pp. E54-E62
    [26]
    Wang, M., Qi, X., Zhao, S. et al. BMC Genomics, 10 (2009),p. 215
    [27]
    Wang, Y.H., Bower, N.I., Reverter, A. et al. Gene expression patterns during intramuscular fat development in cattle J. Anim. Sci., 87 (2009),pp. 119-130
    [28]
    Yang, Y. Use of genomic DNA as reference in DNA microarrays Methods Mol. Biol., 544 (2009),pp. 439-450
    [29]
    Zhao, L.P., Prentice, R., Breeden, L. Statistical modeling of large microarray data sets to identify stimulus-response profiles Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5631-5636
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return