5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 3
Mar.  2010
Turn off MathJax
Article Contents

Cytokinesis and cancer: Polo loves ROCK‘n’ Rho(A)

doi: 10.1016/S1673-8527(09)60034-5
More Information
  • Corresponding author: E-mail address: jing_li@mail.cnu.edu.cn (Jing Li); E-mail address: xingzhi_xu@mail.cnu.edu.cn (Xingzhi Xu)
  • Received Date: 2009-12-24
  • Accepted Date: 2010-02-09
  • Rev Recd Date: 2010-02-08
  • Available Online: 2010-03-27
  • Publish Date: 2010-03-20
  • Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.
  • loading
  • [1]
    Ando, K., Ozaki, T., Yamamoto, H. et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation J. Biol. Chem., 279 (2004),pp. 25549-25561
    [2]
    Asiedu, M., Wu, D., Matsumura, F. et al. Phosphorylation of MyoGEF on Thr-574 by Plk1 promotes MyoGEF localization to the central spindle J. Biol. Chem., 283 (2008),pp. 28392-28400
    [3]
    Asiedu, M., Wu, D., Matsumura, F. et al. Centrosome/spindle pole-associated protein regulates cytokinesis via promoting the recruitment of MyoGEF to the central spindle Mol. Biol. Cell, 20 (2009),pp. 1428-1440
    [4]
    Bao, L., Kimzey, A., Sauter, G. et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers Am. J. Pathol., 164 (2004),pp. 1727-1737
    [5]
    Barr, F.A., Gruneberg, U. Cytokinesis: placing and making the final cut Cell, 131 (2007),pp. 847-860
    [6]
    Barr, F.A., Sillje, H.H., Nigg, E.A. Polo-like kinases and the orchestration of cell division Nat. Rev. Mol. Cell Biol., 5 (2004),pp. 429-440
    [7]
    Baumann, C., Korner, R., Hofmann, K. et al. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint Cell, 128 (2007),pp. 101-114
    [8]
    Bement, W.M., Benink, H.A., von Dassow, G. A microtubule-dependent zone of active RhoA during cleavage plane specification J. Cell Biol., 170 (2005),pp. 91-101
    [9]
    Brennan, I.M., Peters, U., Kapoor, T.M. et al. Polo-like kinase controls vertebrate spindle elongation and cytokinesis PLoS One, 2 (2007),p. e409
    [10]
    Bringmann, H., Hyman, A.A. A cytokinesis furrow is positioned by two consecutive signals Nature, 436 (2005),pp. 731-734
    [11]
    Burkard, M.E., Randall, C.L., Larochelle, S. et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 4383-4388
    [12]
    Burkard, M.E., Maciejowski, J., Rodriguez-Bravo, V. et al. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells PLoS Biol., 7 (2009),p. e1000111
    [13]
    Canman, J.C., Lewellyn, L., Laband, K. et al. Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis Science, 322 (2008),pp. 1543-1546
    [14]
    Carlton, J.G., Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery Science, 316 (2007),pp. 1908-1912
    [15]
    Chalamalasetty, R.B., Hummer, S., Nigg, E.A. et al. Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission J. Cell Sci., 119 (2006),pp. 3008-3019
    [16]
    Chen, T.C., Lee, S.A., Hong, T.M. et al. From midbody protein-protein interaction network construction to novel regulators in cytokinesis J. Proteome Res., 8 (2009),pp. 4943-4953
    [17]
    Chen, Y., Yang, Z., Meng, M. et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement Mol. Cell, 35 (2009),pp. 841-855
    [18]
    Croft, D.R., Olson, M.F. Mol. Cell Biol., 26 (2006),pp. 4612-4627
    [19]
    Daniels, M.J., Wang, Y., Lee, M. et al. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2 Science, 306 (2004),pp. 876-879
    [20]
    Di Cunto, F., Imarisio, S., Hirsch, E. et al. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis Neuron, 28 (2000),pp. 115-127
    [21]
    Dias, S.S., Hogan, C., Ochocka, A.M. et al. Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover FEBS Lett., 583 (2009),pp. 3543-3548
    [22]
    Elia, A.E., Rellos, P., Haire, L.F. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain Cell, 115 (2003),pp. 83-95
    [23]
    Fabbro, M., Zhou, B.B., Takahashi, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis Dev. Cell, 9 (2005),pp. 477-488
    [24]
    Fujiwara, T., Bandi, M., Nitta, M. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells Nature, 437 (2005),pp. 1043-1047
    [25]
    Glotzer, M. The molecular requirements for cytokinesis Science, 307 (2005),pp. 1735-1739
    [26]
    Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs Nat. Rev. Mol. Cell. Biol., 10 (2009),pp. 9-20
    [27]
    Gomez del Pulgar, T., Benitah, S.A., Valeron, P.F. et al. Rho GTPase expression in tumourigenesis: evidence for a significant link Bioessays, 27 (2005),pp. 602-613
    [28]
    Hirose, K., Kawashima, T., Iwamoto, I. et al. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody J. Biol. Chem., 276 (2001),pp. 5821-5828
    [29]
    Hutterer, A., Glotzer, M., Mishima, M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody Curr. Biol., 19 (2009),pp. 2043-2049
    [30]
    Imai, K., Kijima, T., Noda, Y. et al. Biochem. Biophys. Res. Commun., 296 (2002),pp. 305-312
    [31]
    Incassati, A., Patel, D., McCance, D.J. Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6 Oncogene, 25 (2006),pp. 2444-2451
    [32]
    Inoda, S., Hirohashi, Y., Torigoe, T. et al. Cep55/c10orf3, a tumor antigen derived from a centrosome residing protein in breast carcinoma J. Immunother., 32 (2009),pp. 474-485
    [33]
    Jordan, P., Karess, R. J. Cell Biol., 139 (1997),pp. 1805-1819
    [34]
    Kawano, Y., Fukata, Y., Oshiro, N. et al. J. Cell Biol., 147 (1999),pp. 1023-1038
    [35]
    Keil, R., Kiessling, C., Hatzfeld, M. Targeting of p0071 to the midbody depends on KIF3 J. Cell Sci., 122 (2009),pp. 1174-1183
    [36]
    Koida, N., Ozaki, T., Yamamoto, H. et al. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation J. Biol. Chem., 283 (2008),pp. 8555-8563
    [37]
    Komatsu, S., Yano, T., Shibata, M. et al. Effects of the regulatory light chain phosphorylation of myosin II on mitosis and cytokinesis of mammalian cells J. Biol. Chem., 275 (2000),pp. 34512-34520
    [38]
    Komatsu, S., Takenobu, H., Ozaki, T. et al. Plk1 regulates liver tumor cell death by phosphorylation of TAp63 Oncogene, 28 (2009),pp. 3631-3641
    [39]
    Kosako, H., Yoshida, T., Matsumura, F. et al. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow Oncogene, 19 (2000),pp. 6059-6064
    [40]
    Kreis, N.N., Sommer, K., Sanhaji, M. et al. Cell Cycle, 8 (2009),pp. 460-472
    [41]
    Lee, S., Helfman, D.M. J. Biol. Chem., 279 (2004),pp. 1885-1891
    [42]
    Lin, M., van Golen, K.L. Rho-regulatory proteins in breast cancer cell motility and invasion Breast Cancer Res. Treat., 84 (2004),pp. 49-60
    [43]
    Liu, X., Erikson, R.L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 5789-5794
    [44]
    Liu, X., Zhou, T., Kuriyama, R. et al. Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1 J. Cell Sci., 117 (2004),pp. 3233-3246
    [45]
    Lordier, L., Jalil, A., Aurade, F. et al. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling Blood, 112 (2008),pp. 3164-3174
    [46]
    Lowery, D.M., Clauser, K.R., Hjerrild, M. et al. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate EMBO J., 26 (2007),pp. 2262-2273
    [47]
    Madaule, P., Eda, M., Watanabe, N. et al. Role of citron kinase as a target of the small GTPase Rho in cytokinesis Nature, 394 (1998),pp. 491-494
    [48]
    Matsumura, F. Regulation of myosin II during cytokinesis in higher eukaryotes Trends Cell Biol., 15 (2005),pp. 371-377
    [49]
    Matsumura, F., Hartshorne, D.J. Myosin phosphatase target subunit: Many roles in cell function Biochem. Biophys. Res. Commun., 369 (2008),pp. 149-156
    [50]
    Matuliene, J., Kuriyama, R. Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells Mol. Biol. Cell, 13 (2002),pp. 1832-1845
    [51]
    Matuliene, J., Kuriyama, R. Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1 Mol. Biol. Cell, 15 (2004),pp. 3083-3094
    [52]
    McNally, K.P., Buster, D., McNally, F.J. Katanin-mediated microtubule severing can be regulated by multiple mechanisms Cell Motil. Cytoskeleton, 53 (2002),pp. 337-349
    [53]
    Meng, X., Fan, J., Shen, Z. Roles of BCCIP in chromosome stability and cytokinesis Oncogene, 26 (2007),pp. 6253-6260
    [54]
    Miki, T., Smith, C.L., Long, J.E. et al. Nature, 362 (1993),pp. 462-465
    [55]
    Miller, A.L., Bement, W.M. Regulation of cytokinesis by Rho GTPase flux Nat. Cell Biol., 11 (2009),pp. 71-77
    [56]
    Mishima, M., Kaitna, S., Glotzer, M. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity Dev. Cell, 2 (2002),pp. 41-54
    [57]
    Mollinari, C., Kleman, J.P., Jiang, W. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone J. Cell Biol., 157 (2002),pp. 1175-1186
    [58]
    Mross, K., Frost, A., Steinbild, S. et al. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel Polo-like kinase 1 inhibitor, in patients with advanced solid tumors J. Clin. Oncol., 26 (2008),pp. 5511-5517
    [59]
    Narumiya, S., Yasuda, S. Rho GTPases in animal cell mitosis Curr. Opin. Cell Biol., 18 (2006),pp. 199-205
    [60]
    Neef, R., Preisinger, C., Sutcliffe, J. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis J. Cell Biol., 162 (2003),pp. 863-875
    [61]
    Neef, R., Gruneberg, U., Kopajtich, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1 Nat. Cell Biol., 9 (2007),pp. 436-444
    [62]
    Niiya, F., Tatsumoto, T., Lee, K.S. et al. Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA Oncogene, 25 (2006),pp. 827-837
    [63]
    Normand, G., King, R.W.
    [64]
    Ohkura, H., Hagan, I.M., Glover, D.M. Genes Dev., 9 (1995),pp. 1059-1073
    [65]
    Oliferenko, S., Chew, T.G., Balasubramanian, M.K. Positioning cytokinesis Genes Dev., 23 (2009),pp. 660-674
    [66]
    Pavicic-Kaltenbrunner, V., Mishima, M., Glotzer, M. Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex Mol. Biol. Cell, 18 (2007),pp. 4992-5003
    [67]
    Peddibhotla, S., Lam, M.H., Gonzalez-Rimbau, M. et al. The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5159-5164
    [68]
    Petronczki, M., Glotzer, M., Kraut, N. et al. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle Dev. Cell, 12 (2007),pp. 713-725
    [69]
    Piekny, A., Werner, M., Glotzer, M. Cytokinesis: welcome to the Rho zone Trends Cell Biol., 15 (2005),pp. 651-658
    [70]
    Rappaport, R., Ebstein, R.P. Duration of stimulus and latent periods preceding furrow formation in sand dollar eggs J. Exp. Zool., 158 (1965),pp. 373-382
    [71]
    Rivero, F., Illenberger, D., Somesh, B.P. et al. Defects in cytokinesis, actin reorganization and the contractile vacuole in cells deficient in RhoGDI EMBO J., 21 (2002),pp. 4539-4549
    [72]
    Sahai, E., Ishizaki, T., Narumiya, S. et al. Transformation mediated by RhoA requires activity of ROCK kinases Curr. Biol., 9 (1999),pp. 136-145
    [73]
    Saito, S., Liu, X.F., Kamijo, K. et al. Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation J. Biol. Chem., 279 (2004),pp. 7169-7179
    [74]
    Sano, M., Genkai, N., Yajima, N. et al. Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients Oncol. Rep., 16 (2006),pp. 1093-1098
    [75]
    Santamaria, A., Neef, R., Eberspacher, U. et al. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis Mol. Biol. Cell, 18 (2007),pp. 4024-4036
    [76]
    Shimizu, Y., Thumkeo, D., Keel, J. et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles J. Cell Biol., 168 (2005),pp. 941-953
    [77]
    Skop, A.R., Liu, H., , Meyer, B.J. et al. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms Science, 305 (2004),pp. 61-66
    [78]
    Soond, S.M., Barry, S.P., Melino, G. et al. p73-mediated transcriptional activity is negatively regulated by polo-like kinase 1 Cell Cycle, 7 (2008),pp. 1214-1223
    [79]
    Strebhardt, K., Ullrich, A. Targeting polo-like kinase 1 for cancer therapy Nat. Rev. Cancer, 6 (2006),pp. 321-330
    [80]
    Sunkel, C.E., Glover, D.M. J. Cell Sci., 89 (1988),pp. 25-38
    [81]
    Thumkeo, D., Keel, J., Ishizaki, T. et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death Mol. Cell Biol., 23 (2003),pp. 5043-5055
    [82]
    van de Weerdt, B.C., Medema, R.H. Polo-like kinases: a team in control of the division Cell Cycle, 5 (2006),pp. 853-864
    [83]
    van der Horst, A., Khanna, K.K. The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55 Cancer Res., 69 (2009),pp. 6651-6659
    [84]
    van der Horst, A., Simmons, J., Khanna, K.K. Cep55 stabilization is required for normal execution of cytokinesis Cell Cycle, 8 (2009),pp. 3742-3749
    [85]
    Vega, F.M., Ridley, A.J. Rho GTPases in cancer cell biology FEBS Lett., 582 (2008),pp. 2093-2101
    [86]
    Wolf, A., Keil, R., Gotzl, O. et al. The armadillo protein p0071 regulates Rho signalling during cytokinesis Nat. Cell Biol., 8 (2006),pp. 1432-1440
    [87]
    Wolfe, B.A., Takaki, T., Petronczki, M. et al. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation PLoS Biol., 7 (2009),p. e1000110
    [88]
    Wong, R., Fabian, L., Forer, A. et al. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis BMC Cell Biol., 8 (2007),p. 15
    [89]
    Wu, D., Asiedu, M., Wei, Q. Myosin-interacting guanine exchange factor (MyoGEF) regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC Oncogene, 28 (2009),pp. 2219-2230
    [90]
    Wu, D., Asiedu, M., Adelstein, R.S. et al. A novel guanine nucleotide exchange factor MyoGEF is required for cytokinesis Cell Cycle, 5 (2006),pp. 1234-1239
    [91]
    Xiao, L., Eto, M., Kazanietz, M.G. J. Biol. Chem., 284 (2009),pp. 29365-29375
    [92]
    Xu, G.G., Etzkorn, F.A. Pin1 as an anticancer drug target Drug News Perspect., 22 (2009),pp. 399-407
    [93]
    Xue, W., Krasnitz, A., Lucito, R. et al. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma Genes Dev., 22 (2008),pp. 1439-1444
    [94]
    Yamashiro, S., Totsukawa, G., Yamakita, Y. et al. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II Mol. Biol. Cell, 14 (2003),pp. 1745-1756
    [95]
    Yamashiro, S., Yamakita, Y., Totsukawa, G. et al. Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1 Dev. Cell, 14 (2008),pp. 787-797
    [96]
    Yang, X., Li, H., Zhou, Z. et al. Plk1-mediated phosphorylation of Topors regulates p53 stability J. Biol. Chem., 284 (2009),pp. 18588-18592
    [97]
    Ying, H., Biroc, S.L., Li, W.W. et al. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models Mol. Cancer Ther., 5 (2006),pp. 2158-2164
    [98]
    Yokoyama, T., Goto, H., Izawa, I. et al. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM) Genes Cells, 10 (2005),pp. 127-137
    [99]
    Yoshida, S., Bartolini, S., Pellman, D. Mechanisms for concentrating Rho1 during cytokinesis Genes Dev., 23 (2009),pp. 810-823
    [100]
    Yoshida, S., Kono, K., Lowery, D.M. et al. Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis Science, 313 (2006),pp. 108-111
    [101]
    Yuce, O., Piekny, A., Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA J. Cell Biol., 170 (2005),pp. 571-582
    [102]
    Zhao, W.M., Seki, A., Fang, G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis Mol. Biol. Cell, 17 (2006),pp. 3881-3896
    [103]
    Zhou, T., Aumais, J.P., Liu, X. et al. A role for Plk1 phosphorylation of NudC in cytokinesis Dev. Cell, 5 (2003),pp. 127-138
    [104]
    Zhu, C., Jiang, W. Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 343-348
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return