[1] |
Adams, D.S., Eickbush, T.H., Herrera, R.J. et al. J. Mol. Biol., 187 (1986),pp. 465-478
|
[2] |
Dewannieux, M., Esnault, C., Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences Nat. Genet., 35 (2003),pp. 41-48
|
[3] |
Eickbush, T.H. Transposing without ends: the non-LTR retrotransposable elements New Biol., 4 (1992),pp. 430-440
|
[4] |
Felsenstein, J. PHYLIP—Phylogeny Inference Package (Version 3.2) Cladistics, 5 (1989),pp. 164-166
|
[5] |
Galli, G., Hofstette, H., Bimstiel, M.L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements Nature, 294 (1981),pp. 626-631
|
[6] |
Hamada, M., Kido, Y., Himberg, M. et al. A newly isolated family of short interspersed repetitive elements (SINEs) in coregonid fishes (whitefish) with sequences that are almost identical to those of the SmaI family of repeats: possible evidence for the horizontal transfer of SINEs Genetics, 146 (1997),pp. 355-367
|
[7] |
Hasan, G., Turner, M.J., Cordingley, J.S. Cell, 37 (1984),pp. 333-341
|
[8] |
Kajikawa, M., Okada, N. LINEs mobilize SINEs in the eel through a shared 3′ sequence Cell, 111 (2002),pp. 433-444
|
[9] |
Kajikawa, M., Okada, N. Isolation and characterization of active LINE and SINEs from the eel Mol. Biol. Evol., 22 (2005),pp. 673-682
|
[10] |
Kido, Y., Aono, M., Yamaki, T. et al. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 2326-2330
|
[11] |
Kimura, R.H., Choudary, P.V., Schmid, C.W. Silkworm Bm1 SINE RNA increases following cellular insults Nucleic Acids Res., 27 (1999),pp. 3380-3387
|
[12] |
Kramerov, D.A., Vassetzky, N.S. Short retroposon in eukaryotic genome Int. Rev. Cytol., 247 (2005),pp. 165-221
|
[13] |
Lander, E.S., Linton, L.M., Birren, B. et al. Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
|
[14] |
Luan, D.D., Korman, M.H., Jakubczak, J.L. et al. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition Cell, 72 (1993),pp. 595-605
|
[15] |
Lowe, T.M., Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence Nucleic Acids Res., 25 (1997),pp. 955-964
|
[16] |
Maichele, A.J., Farwell, N.J., Chamberlain, J.S. A B2 repeat insertion generates altemate structures of the mouse muscle Y-phosphorylase kinase gene Genomics, 16 (1993),pp. 139-149
|
[17] |
Nakajima, Y., Hashido, K., Tsuchida, K. et al. J. Mol. Evol., 48 (1999),pp. 577-585
|
[18] |
Ogiwara, I., Miya, M., Ohshima, K. et al. Retropositional Parasitism of SINEs on LINEs: identification of SINEs and LINEs in Elasmobranchs Mol. Biol. Evol., 16 (1999),pp. 1238-1250
|
[19] |
Ohshima, K., Okada, N. SINEs and LINEs: symbionts of eukaryotic genomes with a common tail Cytogenet. Genome Res., 110 (2005),pp. 475-490
|
[20] |
Ohshima, K., Hamada, M., Terai, Y. et al. The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements Mol. Cell Biol., 16 (1996),pp. 3756-3764
|
[21] |
Okada, N. SINEs: short interspersed repeated elements of the eukaryotic genome Trends Ecol. Evol., 6 (1991),pp. 358-361
|
[22] |
Okada, N., Hamada, M., Ogiwara, I. et al. SINEs and LINEs share common 3′ sequences: a review Gene, 205 (1997),pp. 229-243
|
[23] |
Piskurek, O., Austin, C.C., Okada, N. Sauria SINEs: novel short interspersed retroposable elements that are widespread in reptile genomes J. Mol. Evol., 62 (2006),pp. 630-644
|
[24] |
Rho, M., Tang, H. MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes Nucleic Acids Res., 37 (2009),pp. 1-12
|
[25] |
Schmid, C.W., Maraia, R. Transcriptional regulation and transpositional selection of active SINE sequences Curr. Opin. Genet. Dev., 2 (1992),pp. 874-882
|
[26] |
Sela, N., Mersch, B., Gal-Mark, N. et al. Comparative analysis of transposed elements' insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome Genome Biol., 8 (2007),pp. R1271-R12719
|
[27] |
Shedlock, A.M., Okada, N. SINE insertions: powerful tools for molecular systematics Bioessays, 22 (2000),pp. 148-160
|
[28] |
Smit, A. F. A., Hubley, R., and Green, P. (1996–2004). RepeatMasker Open-3.0 (http://www.repeatmsker.org).
|
[29] |
Sun, F.J., Fleurdepine, S., Cecile, B.A. et al. Common evolutionary trends for SINE RNA structures Trends Genet., 23 (2006),pp. 26-33
|
[30] |
Takasaki, N., Murata, S., Saitoh, M. et al. Species-specific amplification of tRNAderived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 10153-10157
|
[31] |
Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),p. 4673
|
[32] |
Tsuchimoto, S., Hirao, Y., Ohtsubo, E. et al. New SINE families from rice, OsSN, with poly(A) at the 3′ ends Genes Genet. Syst., 83 (2008),pp. 227-236
|
[33] |
Ullu, E., Tschudi, C. Alu sequences are processed 7SL RNA genes Nature, 312 (1984),pp. 171-172
|
[34] |
Wang, J., Wong, G.K., Ni, P.X. et al. RePS: a sequence assembler that masks exact repeats identified from the shotgun data Genome Res., 2 (2002),pp. 824-831
|
[35] |
Weiner, A.M. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome Cell, 22 (1980),pp. 209-218
|
[36] |
Wichman, H.A., Van den Bussche, R.A., Hamilton, M.J. et al. Transposable elements and the evolution of genome organization in mammals Genetica, 86 (1992),pp. 287-293
|
[37] |
Xia, Q., Wang, J., Zhou, Z. et al. Insect Biochem. Mol. Biol., 38 (2008),pp. 1036-1045
|
[38] |
Xia, Q.Y., Guo, Y., Zhang, Z. et al. Science, 326 (2009),pp. 433-436
|