5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 1
Jan.  2010
Turn off MathJax
Article Contents

DNA cytosine methylation in plant development

doi: 10.1016/S1673-8527(09)60020-5
More Information
  • Corresponding author: E-mail address: baoliu@nenu.edu.cn (Bao Liu)
  • Received Date: 2009-09-19
  • Accepted Date: 2009-11-30
  • Rev Recd Date: 2009-11-15
  • Available Online: 2010-02-18
  • Publish Date: 2010-01-20
  • Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.
  • loading
  • [1]
    Berg, A., Meza, T.J., Mahic, M. et al. Nucleic Acids Res., 31 (2003),pp. 5291-5304
    [2]
    Berger, F., Chaudhury, A. Parental memories shape seeds Trends Plant Sci., 14 (2009),pp. 550-556
    [3]
    Bird, A. DNA methylation patterns and epigenetic memory Genes Dev., 16 (2002),pp. 6-21
    [4]
    Brown, J.C.L., De Decker, M.M., Fieldes, M.A. A comparative analysis of developmental profiles for DNA methylation in 5-azacytidine-induced early-flowering flax lines and their control Plant Sci., 175 (2008),pp. 217-225
    [5]
    Cao, X., Springer, N.M., Muszynski, M.G. et al. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 4979-4984
    [6]
    Cao, X., Jacobsen, S.E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 16491-16498
    [7]
    Cao, X., Jacobsen, S.E. Curr. Biol., 12 (2002),pp. 1138-1144
    [8]
    Cao, X., Aufsatz, W., Zilberman, D. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation Curr. Biol., 13 (2003),pp. 2212-2217
    [9]
    Carrozza, M.J., Li, B., Florens, L. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription Cell, 123 (2005),pp. 581-592
    [10]
    Chan, S.W.L., Henderson, I.R., Jacobsen, S.E. Nat. Rev. Genet., 6 (2005),pp. 351-360
    [11]
    Chandler, V.L., Stam, M. Chromatin conversations: mechanisms and implications of paramutation Nat. Rev. Genet., 5 (2004),pp. 532-544
    [12]
    Chawla, R., Nicholson, S.J., Folta, K.M. et al. Plant J., 52 (2007),pp. 1105-1118
    [13]
    Chen, T., Li, E. Structure and function of eukaryotic DNA methyltransferases Curr. Top. Dev. Biol., 60 (2004),pp. 55-89
    [14]
    Choi, Y., Gehring, M., Johnson, L. et al. Cell, 110 (2002),pp. 33-42
    [15]
    Cokus, S.J., Feng, S., Zhang, X. et al. Nature, 452 (2008),pp. 215-219
    [16]
    Dai, Y., Ni, Z., Dai, J. et al. Biochim. Biophys. Acta, 1729 (2005),pp. 118-125
    [17]
    Finnegan, E.J., Kovac, K.A. Plant DNA methyltransferases Plant Mol. Biol., 43 (2000),pp. 189-201
    [18]
    Finnegan, E.J., Peacock, W.J., Dennis, E.S. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 8449-8454
    [19]
    Finnegan, E.J., Peacock, W.J., Dennis, E.S. DNA methylation, a key regulator of plant development and other processes Curr. Opin. Genet. Dev., 10 (2000),pp. 217-223
    [20]
    Fransz, P.F., de Jong, J.H. Chromatin dynamics in plants Curr. Opin. Genet. Dev., 5 (2002),pp. 560-567
    [21]
    Gehring, M., Henikoff, S. DNA methylation dynamics in plant genomes Biochim. Biophys. Acta, 1769 (2007),pp. 276-286
    [22]
    Gehring, M., Bubb, K.L., Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting Science, 324 (2009),pp. 1447-1451
    [23]
    Gong, Z., Morales-Ruiz, T., Ariza, R.R. et al. Cell, 111 (2002),pp. 803-814
    [24]
    Gonzalo, S., Jaco, I., Fraga, M.F. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells Nat. Cell Biol., 8 (2006),pp. 416-424
    [25]
    He, X.J., Hsu, Y.F., Zhu, S. et al. Cell, 137 (2009),pp. 498-508
    [26]
    Henderson, I.R., Jacobsen, S.E. Epigenetic inheritance in plants Nature, 447 (2007),pp. 418-424
    [27]
    Hsieh, C.L. Dynamics of DNA methylation pattern Curr. Opin. Genet. Dev., 10 (2000),pp. 224-228
    [28]
    Hsieh, T.F., Ibarra, C.A., Silva, P. et al. Science, 324 (2009),pp. 1451-1454
    [29]
    Huettel, B., Kanno, T., Daxinger, L. et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants Biochim. Biophys. Acta, 1769 (2007),pp. 358-374
    [30]
    Igarashi, J., Muroi, S., Kawashima, H. et al. Quantitative analysis of human tissue-specific differences in methylation Biochem. Biophys. Res. Commun., 376 (2008),pp. 658-664
    [31]
    Ito, T., Sakai, H., Meyerowitz, E.M. Curr. Biol., 13 (2003),pp. 1524-1530
    [32]
    Jacobsen, S.E., Meyerowitz, E.M. Science, 277 (1997),pp. 1100-1103
    [33]
    Jullien, P.E., Mosquna, A., Ingouff, M. et al. PLoS Biol, 6 (2008),p. e194
    [34]
    Kakutani, T., Jeddeloh, J.A., Flowers, S.K. et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 12406-12411
    [35]
    Kankel, M.W., Ramsey, D.E., Stokes, T.L. et al. Genetics, 163 (2003),pp. 1109-1122
    [36]
    Kinoshita, T., Miura, A., Choi, Y. et al. Science, 303 (2004),pp. 521-523
    [37]
    Kitamura, E., Igarashi, J., Morohashi, A. et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans Genomics, 89 (2007),pp. 326-337
    [38]
    Lauria, M., Rupe, M., Guo, M. et al. Plant Cell, 16 (2004),pp. 510-522
    [39]
    Lawrence, R.J., Earley, K., Pontes, O. et al. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance Mol. Cell, 13 (2004),pp. 599-609
    [40]
    Li, X, Wang, X., He, K., Ma, Y. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression Plant Cell, 20 (2008),pp. 259-276
    [41]
    Lindroth, A.M., Cao, X., Jackson, J.P. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation Science, 292 (2001),pp. 2077-2080
    [42]
    Lister, R., O'Malley, R.C., Tonti-Filippini, J. et al. Cell, 133 (2008),pp. 523-536
    [43]
    Lu, Y., Rong, T., Cao, M. Analysis of DNA methylation in different maize tissues J. Genet. Genomics, 35 (2008),pp. 41-48
    [44]
    Matzke, M., Kanno, T., Daxinger, L. et al. RNA-mediated chromatin-based silencing in plants Curr. Opin. Cell Biol., 21 (2009),pp. 367-376
    [45]
    Messeguer, R., Ganal, M.W., Steffens, J.C. et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA Plant Mol. Biol., 16 (1991),pp. 753-770
    [46]
    Miura, A., Yonebayashi, S., Watanabe, K. et al. Nature, 411 (2001),pp. 212-214
    [47]
    Nakano, Y., Steward, N., Sekine, M. et al. Plant Cell Physiol., 41 (2000),pp. 448-457
    [48]
    Palatnik, J.F., Allen, E., Wu, X. et al. Control of leaf morphogenesis by microRNAs Nature, 425 (2003),pp. 257-263
    [49]
    Pavlopoulou, A., Kossida, S. Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution Genomics, 90 (2007),pp. 530-541
    [50]
    Rabinowicz, P.D., Palmer, L.E., May, B.P. et al. Genes and transposons are differentially methylated in plants, but not in mammals Genome Res., 13 (2003),pp. 2658-2664
    [51]
    Radchuk, V.V., Sreenivasulu, N., Radchuk, R.I. et al. The methylation cycle and its possible functions in barley endosperm development Plant Mol. Biol., 59 (2005),pp. 289-307
    [52]
    Reik, W., Walter, J. Imprinting mechanisms in mammals Curr. Opin. Genet. Dev., 8 (1998),pp. 154-164
    [53]
    Reik, W., Dean, W., Walter, J. Epigenetic reprogramming in mammalian development Science, 293 (2001),pp. 1089-1093
    [54]
    Ruiz-Garcia, L., Cervera, M.T., Martinez-Zapater, J.M. Planta, 222 (2005),pp. 301-306
    [55]
    Schilling, E., Rehli, M. Global, comparative analysis of tissue-specific promoter CpG methylation Genomics, 90 (2007),pp. 314-323
    [56]
    Sha, A.H., Lin, X.H., Huang, J.B. et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis Mol. Genet. Genomics, 273 (2005),pp. 484-490
    [57]
    Shibuya, K., Fukushima, S., Takatsuji, H. RNA-directed DNA methylation induces transcriptional activation in plants Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 1660-1665
    [58]
    Sieburth, L.E., Meyerowitz, E.M. Plant Cell, 9 (1997),pp. 355-365
    [59]
    Song, F., Smith, J.F., Kimura, M.T. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 3336-3341
    [60]
    Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C. et al. Mol. Cell, 6 (2000),pp. 791-802
    [61]
    Springer, N.M., Kaeppler, S.M. Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins Plant Physiol., 138 (2005),pp. 92-104
    [62]
    Stam, M., Viterbo, A., Mol, J.N.M. et al. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants Mol. Cell. Biol., 18 (1998),pp. 6165-6177
    [63]
    Steimer, A., Schob, H., Grossniklaus, U. Epigenetic control of plant development: New layers of complexity Curr. Opin. Plant Biol., 7 (2004),pp. 11-19
    [64]
    Stokes, T.L., Kunkel, B.N., Richards, E.J. Genes Dev., 16 (2002),pp. 171-182
    [65]
    Suzuki, M.M., Bird, A. DNA methylation landscapes: provocative insights from epigenomics Nat. Rev. Genet., 9 (2008),pp. 465-476
    [66]
    Teerawanichpan, P., Krittanai, P., Chauvatcharin, N. et al. Purification and characterization of rice DNA methyltransferase Plant Physiol. Biochem., 47 (2009),pp. 671-680
    [67]
    Teixeira, F.K., Heredia, F., Sarazin, A. et al. A role for RNAi in the selective correction of DNA methylation defects Science, 323 (2009),pp. 1600-1604
    [68]
    Tran, R.K., Henikoff, J.G., Zilberman, D. et al. Curr. Biol., 15 (2005),pp. 154-159
    [69]
    Vaughn, M.W., Tanurdzc, M., Lippman, Z. et al. PLoS Biol., 5 (2007),pp. 1617-1629
    [70]
    Wang, X., Elling, A.A., Li, X. et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize Plant Cell, 21 (2009),pp. 1053-1069
    [71]
    Woo, H.R., Dittmer, T.A., Richards, E.J. PLoS Genet., 4 (2008),p. e1000156
    [72]
    Xiao, W., Custard, R.D., Brown, R.C. et al. Plant Cell, 18 (2006),pp. 805-814
    [73]
    Xiao, W., Gehring, M., Choi, Y. et al. Dev. Cell, 5 (2003),pp. 891-901
    [74]
    Xiong, L.Z., Xu, C.G., Saghai Maroof, M.A. et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique Mol. Gen. Genet., 261 (1999),pp. 439-446
    [75]
    Yaish, M.W.F., Peng, M., Rothstein, S.J. Plant J., 59 (2009),pp. 123-135
    [76]
    Yamauchi, T., Moritoh, S., Johzuka-Hisatomi, Y. et al. J. Plant Physiol., 165 (2008),pp. 1774-1782
    [77]
    Yoder, J.A., Walsh, C.P., Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites Trends Genet., 13 (1997),pp. 335-340
    [78]
    Zemach, A., Grafi, G. Plant J., 34 (2003),pp. 565-572
    [79]
    Zemach, A., Li, Y., Wayburn, B. et al. Plant Cell, 17 (2005),pp. 1549-1558
    [80]
    Zhang, M.S., Yan, H.Y., Zhao, N. et al. Theor. Appl. Genet., 115 (2007),pp. 195-207
    [81]
    Zhang, X., Henderson, I.R., Lu, C. et al. Role of RNA polymerase IV in plant small RNA metabolism Proc. Natl. Acad Sci. USA, 104 (2007),pp. 4536-4541
    [82]
    Zhang, X., Yazaki, J., Sundaresan, A. et al. Cell, 126 (2006),pp. 1189-1201
    [83]
    Zhao, X., Chai, Y., Liu, B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids Plant Sci., 172 (2007),pp. 930-938
    [84]
    Zhu, J., Kapoor, A., Sridhar, V.V. et al. Curr. Biol., 17 (2007),pp. 54-59
    [85]
    Zhu, J.K. Epigenome sequencing comes of age Cell, 133 (2008),pp. 395-397
    [86]
    Zilberman, D. The evolving functions of DNA methylation Curr. Opin. Plant Biol., 11 (2008),pp. 554-559
    [87]
    Zilberman, D., Gehring, M., Tran, R.K. et al. Nat. Genet., 39 (2007),pp. 61-69
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return