5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 1
Jan.  2009
Turn off MathJax
Article Contents

Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana

doi: 10.1016/S1673-8527(09)60003-5
More Information
  • Corresponding author: E-mail address: dwwang@genetics.ac.cn (Daowen Wang)
  • Received Date: 2008-07-15
  • Accepted Date: 2008-11-18
  • Rev Recd Date: 2008-10-23
  • Available Online: 2009-01-20
  • Publish Date: 2009-01-20
  • Abiotic stresses cause serious crop losses. Knowledge on genes functioning in plant responses to adverse growth conditions is essential for developing stress tolerant crops. Here we report that transgenic expression of MYB15, encoding a R2R3 MYB transcription factor in Arabidopsis thaliana, conferred hypersensitivity to exogenous abscisic acid (ABA) and improved tolerance to drought and salt stresses. The promoter of MYB15 was active in not only vegetative and reproductive organs but also the guard cells of stomata. Its transcript level was substantially upregulated by ABA, drought or salt treatments. Compared with wild type (WT) control, MYB15 overexpression lines were hypersensitive to ABA in germination assays, more susceptible to ABA-elicited inhibition of root elongation, and more sensitive to ABA-induced stomatal closure. In line with the above findings, the transcript levels of ABA biosynthesis (ABA1, ABA2), signaling (ABI3), and responsive genes (AtADH1, RD22, RD29B, AtEM6) were generally higher in MYB15 overexpression seedlings than in WT controls after treatment with ABA. MYB15 overexpression lines displayed improved survival and reduced water loss rates than WT control under water deficiency conditions. These overexpression lines also displayed higher tolerance to NaCl stress. Collectively, our data suggest that overexpression of MYB15 improves drought and salt tolerance in Arabidopsis possibly by enhancing the expression levels of the genes involved in ABA biosynthesis and signaling, and those encoding the stress-protective proteins.
  • loading
  • [1]
    Abe, H., Urao, T., Ito, T. et al. Plant Cell, 15 (2003),pp. 63-78
    [2]
    Agarwal, M., Hao, Y., Kapoor, A. et al. A R2R3-type MYB transcription factor is involved in the cold-regulation of CBF genes and in acquired freezing tolerance J. Biol. Chem., 281 (2006),pp. 37636-37645
    [3]
    Boyer, J.S. Plant productivity and environment Science, 218 (1982),pp. 443-448
    [4]
    Brady, S.M., Sarkar, S.F., Bonetta, D. et al. Plant J., 34 (2003),pp. 67-75
    [5]
    Chen, Y., Yang, X., He, K. et al. Plant Mol. Biol., 60 (2006),pp. 107-124
    [6]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [7]
    Cominelli, E., Galbiati, M., Vavasseur, A. et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance Curr. Biol., 15 (2005),pp. 1196-1200
    [8]
    Dai, X., Xu, Y., Ma, Q. et al. Plant Physiol., 143 (2007),pp. 1739-1751
    [9]
    Finkelstein, R.R., Wang, M.L., Lynch, T.J. et al. Plant Cell, 10 (1998),pp. 1043-1054
    [10]
    Finkelstein, R.R., Lynch, T.J. Plant Cell, 12 (2000),pp. 599-609
    [11]
    Finkelstein, R.R., Gampala, S.S., Rock, C.D. Abscisic acid signaling in seeds and seedlings Plant Cell (Suppl.), 14 (2002),pp. S15-S45
    [12]
    Fujita, M., Fujita, Y., Maruyama, K. et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway Plant J., 39 (2004),pp. 863-876
    [13]
    Gamborg, O.L., Miller, R.A., Ojima, K. Nutrient requirements of suspension culture of soybean root cultures Exp. Cell Res., 50 (1968),pp. 151-158
    [14]
    Giraudat, J., Hauge, B.M., Valon, C. et al. Plant Cell, 4 (1992),pp. 1251-1261
    [15]
    Gosti, F., Beaudoin, N., Serizet, C. et al. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling Plant Cell, 11 (1999),pp. 1897-1910
    [16]
    Hirayama, T., Shinozaki, K. Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA Trends Plant Sci., 12 (2007),p. 8
    [17]
    Houde, M., Dallaire, S., N'Dong, D. et al. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves Plant Biotechnol. J., 2 (2004),pp. 381-387
    [18]
    Hugouvieux, V., Kwak, J.M., Schroeder, J.I. Cell, 106 (2001),pp. 477-487
    [19]
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J., 6 (1987),pp. 3901-3907
    [20]
    Jiang, Y., Deyholos, M.K. BMC Plant Biol., 6 (2006),p. 25
    [21]
    Jin, H., Martin, C. Multifunctionality and diversity within the plant MYB-gene family Plant Mol Biol., 41 (1999),pp. 577-585
    [22]
    Kang, J.Y., Choi, H.I., Im, M.Y. et al. Plant Cell, 14 (2002),pp. 343-357
    [23]
    Kasuga, M., Liu, Q., Miura, S. et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor Nat. Biotechnol., 17 (1999),pp. 287-291
    [24]
    Kim, J.-B., Kang, J.-Y., Kim, S.-Y. Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance Plant Biotechnol. J., 2 (2004),pp. 459-466
    [25]
    Kreps, J.A., Wu, Y., Chang, H.-S. et al. Plant Physiol., 130 (2002),pp. 2129-2141
    [26]
    Leung, J., Merlot, S., Giraudat, J. Plant Cell, 9 (1997),pp. 759-771
    [27]
    Li, G., Liu, K., Baldwin, S.A. et al. J. Biol. Chem., 278 (2003),pp. 35732-35742
    [28]
    Liang, Y.K., Dubos, C., Dodd, I.C. et al. Curr. Biol., 15 (2005),pp. 1201-1206
    [29]
    Liu, X.P., Liu, X.Y., Zhang, J. et al. Molecular and functional characterization of sulfiredoxin homologs from higher plants Cell Res., 16 (2006),pp. 287-296
    [30]
    Ma, L., Sun, N., Liu, X. et al. Plant Physiol., 138 (2005),pp. 80-91
    [31]
    Miura, K., Jin, J.B., Lee, J. et al. Plant Cell, 19 (2007),pp. 1403-1414
    [32]
    Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol. Plant, 15 (1962),pp. 473-497
    [33]
    Nakashima, K., Yamaguchi-Shinozaki, K. JARQ, 39 (2005),pp. 221-229
    [34]
    Nakashima, K., Fujita, Y., Katsura, K. et al. Plant Mol. Biol., 60 (2006),pp. 51-68
    [35]
    Pandey, S., Assmann, S.M. Plant Cell, 16 (2004),pp. 1616-1632
    [36]
    Parcy, F., Valon, C., Raynal, M. et al. Plant Cell, 6 (1994),pp. 1567-1582
    [37]
    Parcy, F., Giraudat, J. Plant J., 11 (1997),pp. 693-702
    [38]
    Pei, Z.M., Kuchitsu, K., Ward, J.M. et al. Plant Cell, 9 (1997),pp. 409-423
    [39]
    Pei, Z.M., Ghassemian, M., Kawk, C.M. et al. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss Science, 282 (1998),pp. 287-290
    [40]
    Razem, F.A., El-Kereamy, A., Abrams, S.R. et al. The RNA-binding protein FCA is an abscisic acid receptor Nature, 439 (2006),pp. 290-294
    [41]
    Rohde, A., van Montagu, M., Boerjan, W. Plant Cell Environ, 22 (1999),pp. 261-270
    [42]
    Saez, A., Robert, N., Maktabi, M.H. et al. Plant Physiol., 141 (2006),pp. 1389-1399
    [43]
    Shinozaki, K., Yamaguchi-Shinozaki, K. Gene networks in drought stress response and tolerance J. Exp. Bot., 58 (2007),pp. 221-227
    [44]
    Srivastava, S., Rahman, M.H., Shah, S. et al. Plant Biotechnol. J., 4 (2006),pp. 529-549
    [45]
    Stracke, R., Werber, M., Weisshaar, B. Curr. Opin. Plant Biol., 4 (2001),pp. 447-456
    [46]
    van Engelen, F.A., Molthoff, J.W., Conner, A.J. et al. pBINPLUS: An improved plant transformation vector based on pBIN19 Transgenic Res., 4 (1995),pp. 288-290
    [47]
    Valliyodan, B., Nguyen, H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants Curr. Opin. Plant Biol., 9 (2006),pp. 1-7
    [48]
    Villalobos, M.A., Bartels, D., Iturriaga, G. Plant Physiol., 135 (2004),pp. 309-324
    [49]
    Wang, X.-F., Zhang, D.-P. Abscisic acid receptors: Multiple signal perception sites Ann. Bot., 101 (2008),pp. 311-317
    [50]
    Xiong, L., Schumaker, K.S., Zhu, J.-K. Cell signaling during cold, drought, and salt stresses Plant Cell, 14 (2002),pp. S165-S183
    [51]
    Xiong, L., Zhu, J.-K. Regulation of abscisic acid biosynthesis Plant Physiol., 133 (2003),pp. 29-36
    [52]
    Yamaguchi-Shinozaki, K., Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stress Annu. Rev. Plant Biol., 57 (2006),pp. 781-803
    [53]
    Zeevaart, J.A.D., Creelman, R.A. Metabolism and physiology of abscisic acid Annu. Rev. Plant Physiol. Plant Mol. Biol., 39 (1988),pp. 439-473
    [54]
    Zhu, J.-K. Salt and drought stress signal transduction in plants Annu. Rev. Plant Biol., 53 (2002),pp. 247-273
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return