5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 1
Jan.  2009
Turn off MathJax
Article Contents

Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution

doi: 10.1016/S1673-8527(09)60001-1
More Information
  • Corresponding author: E-mail address: sub@mail.kiz.ac.cn (Bing Su)
  • Received Date: 2008-09-26
  • Accepted Date: 2008-11-11
  • Rev Recd Date: 2008-10-28
  • Available Online: 2009-01-20
  • Publish Date: 2009-01-20
  • MicroRNAs (miRNAs) are endogenous ∼22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the miRNA roles identified in nearly all aspects of biological processes, evidence is mounting that miRNAs could represent a new layer of regulatory network, and their regulatory effect might be much more pervasive than previously suspected. Here we focus on the post-transcriptional level gene regulation of miRNAs in animals and review how the miRNAs act to sustain and shape up the expression profiles of specific cell types; how the miRNAs integrate into the existing gene regulatory networks; and how the miRNAs influence the evolution of 3′UTR of mammalian mRNAs.
  • loading
  • [1]
    Alon, U. Network motifs: Theory and experimental approaches Nat. Rev. Genet., 8 (2007),pp. 450-461
    [2]
    Baek, D., Villen, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
    [3]
    Barabasi, A.L., Oltvai, Z.N. Network biology: Understanding the cell's functional organization Nat. Rev. Genet., 5 (2004),pp. 101-113
    [4]
    Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [5]
    Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
    [6]
    Brennecke, J., Stark, A., Russell, R.B. et al. Principles of microRNA-target recognition PLoS Biol., 3 (2005),p. e85
    [7]
    Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M. et al. Widespread translational inhibition by plant miRNAs and siRNAs Science, 320 (2008),pp. 1185-1190
    [8]
    Chen, X., Xu, H., Yuan, P. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells Cell, 133 (2008),pp. 1106-1117
    [9]
    Cui, Q., Yu, Z., Purisima, E.O. et al. Principles of microRNA regulation of a human cellular signaling network Mol. Syst. Biol., 2 (2006),p. 46
    [10]
    Esquela-Kerscher, A., Slack, F.J. Oncomirs - microRNAs with a role in cancer Nat. Rev. Cancer, 6 (2006),pp. 259-269
    [11]
    Farh, K.K.-H., Grimson, A., Jan, C. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution Science, 310 (2005),pp. 1817-1821
    [12]
    Giraldez, A.J., Mishima, Y., Rihel, J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs Science, 312 (2006),pp. 75-79
    [13]
    He, L., Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
    [14]
    Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell, 120 (2005),pp. 15-20
    [15]
    Lim, L.P., Lau, N.C., Garrett-Engele, P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature, 433 (2005),pp. 769-773
    [16]
    Lin, S.L., Chang, D.C., Chang-Lin, S. et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state RNA, 14 (2008),pp. 2115-2124
    [17]
    Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
    [18]
    Lu, J., Fu, Y., Kumar, S. et al. Mol. Biol. Evol., 25 (2008),pp. 929-938
    [19]
    Marson, A., Levine, S.S., Cole, M.F. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells Cell, 134 (2008),pp. 521-533
    [20]
    O'Donnell, K.A., Wentzel, E.A., Zeller, K.I. et al. c-Myc-regulated microRNAs modulate E2F1 expression Nature, 435 (2005),pp. 839-843
    [21]
    Orom, U.A., Nielsen, F.C., Lund, A.H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation Mol. Cell, 30 (2008),pp. 460-471
    [22]
    Rhoades, M.W., Reinhart, B.J., Lim, L.P. et al. Prediction of plant microRNA targets Cell, 110 (2002),pp. 513-520
    [23]
    Rives, A.W., Galitski, T. Modular organization of cellular networks Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 1128-1133
    [24]
    Selbach, M., Schwanhausser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
    [25]
    Shalgi, R., Lieber, D., Oren, M. et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network PLoS Comput. Biol., 3 (2007),p. e131
    [26]
    Shen-Orr, S.S., Milo, R., Mangan, S. et al. Nat. Genet., 31 (2002),pp. 64-68
    [27]
    Sood, P., Krek, A., Zavolan, M. et al. Cell-type-specific signatures of microRNAs on target mRNA expression Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 2746-2751
    [28]
    Stark, A., Brennecke, J., Bushati, N. et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution Cell, 123 (2005),pp. 1133-1146
    [29]
    Strauss, W.M., Chen, C., Lee, C.T. et al. Nonrestrictive developmental regulation of microRNA gene expression Mamm. Genome, 17 (2006),pp. 833-840
    [30]
    Suh, M.R., Lee, Y., Kim, J.Y. et al. Human embryonic stem cells express a unique set of microRNAs Dev. Biol., 270 (2004),pp. 488-498
    [31]
    Tsang, J., Zhu, J., van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals Mol. Cell, 26 (2007),pp. 753-767
    [32]
    Vasudevan, S., Tong, Y., Steitz, J.A. Switching from repression to activation: MicroRNAs can up-regulate translation Science, 318 (2007),pp. 1931-1934
    [33]
    Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 4034-4039
    [34]
    Yekta, S., Shih, I.H., Bartel, D.P. Science, 304 (2004),pp. 594-596
    [35]
    Zhang, R., Su, B. MicroRNA regulation and the variability of human cortical gene expression Nucleic Acids Res., 36 (2008),pp. 4621-4628
    [36]
    Zhang, R., Peng, Y., Wang, W. et al. Rapid evolution of an X-linked microRNA cluster in primates Genome Res., 17 (2007),pp. 612-617
    [37]
    Zhang, R., Wang, Y.Q., Su, B. Molecular evolution of a primate-specific microRNA family Mol. Biol. Evol., 25 (2008),pp. 1493-1502
    [38]
    Zhou, Q., Chipperfield, H., Melton, D.A. et al. A gene regulatory network in mouse embryonic stem cells Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16438-16443
    [39]
    Zhou, Y., Ferguson, J., Chang, J.T. et al. Inter- and intra-combinatorial regulation by transcription factors and microRNAs BMC Genomics, 8 (2007),p. 396
    [40]
    Zhu, X., Gerstein, M., Snyder, M. Getting connected: Analysis and principles of biological networks Genes Dev., 21 (2007),pp. 1010-1024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return