[1] |
Alon, U. Network motifs: Theory and experimental approaches Nat. Rev. Genet., 8 (2007),pp. 450-461
|
[2] |
Baek, D., Villen, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
|
[3] |
Barabasi, A.L., Oltvai, Z.N. Network biology: Understanding the cell's functional organization Nat. Rev. Genet., 5 (2004),pp. 101-113
|
[4] |
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[5] |
Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
|
[6] |
Brennecke, J., Stark, A., Russell, R.B. et al. Principles of microRNA-target recognition PLoS Biol., 3 (2005),p. e85
|
[7] |
Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M. et al. Widespread translational inhibition by plant miRNAs and siRNAs Science, 320 (2008),pp. 1185-1190
|
[8] |
Chen, X., Xu, H., Yuan, P. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells Cell, 133 (2008),pp. 1106-1117
|
[9] |
Cui, Q., Yu, Z., Purisima, E.O. et al. Principles of microRNA regulation of a human cellular signaling network Mol. Syst. Biol., 2 (2006),p. 46
|
[10] |
Esquela-Kerscher, A., Slack, F.J. Oncomirs - microRNAs with a role in cancer Nat. Rev. Cancer, 6 (2006),pp. 259-269
|
[11] |
Farh, K.K.-H., Grimson, A., Jan, C. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution Science, 310 (2005),pp. 1817-1821
|
[12] |
Giraldez, A.J., Mishima, Y., Rihel, J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs Science, 312 (2006),pp. 75-79
|
[13] |
He, L., Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
|
[14] |
Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell, 120 (2005),pp. 15-20
|
[15] |
Lim, L.P., Lau, N.C., Garrett-Engele, P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature, 433 (2005),pp. 769-773
|
[16] |
Lin, S.L., Chang, D.C., Chang-Lin, S. et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state RNA, 14 (2008),pp. 2115-2124
|
[17] |
Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
|
[18] |
Lu, J., Fu, Y., Kumar, S. et al. Mol. Biol. Evol., 25 (2008),pp. 929-938
|
[19] |
Marson, A., Levine, S.S., Cole, M.F. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells Cell, 134 (2008),pp. 521-533
|
[20] |
O'Donnell, K.A., Wentzel, E.A., Zeller, K.I. et al. c-Myc-regulated microRNAs modulate E2F1 expression Nature, 435 (2005),pp. 839-843
|
[21] |
Orom, U.A., Nielsen, F.C., Lund, A.H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation Mol. Cell, 30 (2008),pp. 460-471
|
[22] |
Rhoades, M.W., Reinhart, B.J., Lim, L.P. et al. Prediction of plant microRNA targets Cell, 110 (2002),pp. 513-520
|
[23] |
Rives, A.W., Galitski, T. Modular organization of cellular networks Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 1128-1133
|
[24] |
Selbach, M., Schwanhausser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
|
[25] |
Shalgi, R., Lieber, D., Oren, M. et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network PLoS Comput. Biol., 3 (2007),p. e131
|
[26] |
Shen-Orr, S.S., Milo, R., Mangan, S. et al. Nat. Genet., 31 (2002),pp. 64-68
|
[27] |
Sood, P., Krek, A., Zavolan, M. et al. Cell-type-specific signatures of microRNAs on target mRNA expression Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 2746-2751
|
[28] |
Stark, A., Brennecke, J., Bushati, N. et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution Cell, 123 (2005),pp. 1133-1146
|
[29] |
Strauss, W.M., Chen, C., Lee, C.T. et al. Nonrestrictive developmental regulation of microRNA gene expression Mamm. Genome, 17 (2006),pp. 833-840
|
[30] |
Suh, M.R., Lee, Y., Kim, J.Y. et al. Human embryonic stem cells express a unique set of microRNAs Dev. Biol., 270 (2004),pp. 488-498
|
[31] |
Tsang, J., Zhu, J., van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals Mol. Cell, 26 (2007),pp. 753-767
|
[32] |
Vasudevan, S., Tong, Y., Steitz, J.A. Switching from repression to activation: MicroRNAs can up-regulate translation Science, 318 (2007),pp. 1931-1934
|
[33] |
Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 4034-4039
|
[34] |
Yekta, S., Shih, I.H., Bartel, D.P. Science, 304 (2004),pp. 594-596
|
[35] |
Zhang, R., Su, B. MicroRNA regulation and the variability of human cortical gene expression Nucleic Acids Res., 36 (2008),pp. 4621-4628
|
[36] |
Zhang, R., Peng, Y., Wang, W. et al. Rapid evolution of an X-linked microRNA cluster in primates Genome Res., 17 (2007),pp. 612-617
|
[37] |
Zhang, R., Wang, Y.Q., Su, B. Molecular evolution of a primate-specific microRNA family Mol. Biol. Evol., 25 (2008),pp. 1493-1502
|
[38] |
Zhou, Q., Chipperfield, H., Melton, D.A. et al. A gene regulatory network in mouse embryonic stem cells Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16438-16443
|
[39] |
Zhou, Y., Ferguson, J., Chang, J.T. et al. Inter- and intra-combinatorial regulation by transcription factors and microRNAs BMC Genomics, 8 (2007),p. 396
|
[40] |
Zhu, X., Gerstein, M., Snyder, M. Getting connected: Analysis and principles of biological networks Genes Dev., 21 (2007),pp. 1010-1024
|