5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 11
Nov.  2009
Turn off MathJax
Article Contents

Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.)

doi: 10.1016/S1673-8527(08)60160-5
More Information
  • Corresponding author: E-mail address: hegh1968@yahoo.com.cn (Guanghua He)
  • Received Date: 2009-06-26
  • Accepted Date: 2009-09-23
  • Rev Recd Date: 2009-08-23
  • Available Online: 2009-11-20
  • Publish Date: 2009-11-20
  • A novel zebra mutant, zebra-15, derived from the restorer line Jinhui10 (Oryza sativa L. ssp. indica) treated by EMS, displayed a distinctive zebra leaf from seedling stage to jointing stage. Its chlorophyll content decreased (55.4%) and the ratio of Chla/Chlb increased (90.2%) significantly in the yellow part of the zebra-15, compared with the wild type. Net photosynthetic rate and fluorescence kinetic parameters showed that the decrease of chlorophyll content significantly influenced the photosynthetic efficiency of the mutant. Genetic analysis of F2 segregation populations derived from the cross of Xinong1A and zebra-15 indicated that the zebra leaf trait is controlled by a single recessive nuclear gene. Ninety-eight out of four hundred and eighty pairs of SSR markers showed the diversity between the Xinong1A and the zebra-15, their F2 population was then used for gene mapping. Zebra-15 (Z-15) gene was primarily restricted on the short arm of chromosome 5 by 150 F2 recessive individuals, 19.6 cM from marker RM3322 and 6.0 cM from marker RM6082. Thirty-six SSR markers were newly designed in the restricted location, and the Z-15 was finally located between markers nSSR516 and nSSR502 with the physical region 258 kb by using 1,054 F2 recessive individuals.
  • loading
  • [1]
    Abenes, M.L.P., Tabien, R.E., McCouch, S.R. et al. Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice Euphytica, 76 (1994),pp. 81-87
    [2]
    Alberte, R.S., Hesketh, J.D., Hofstra, G. et al. Composition and activity of the photosynthetic apparatus in temperature sensitive mutants of higher plants Proc. Natl. Acad. Sci. USA, 71 (1974),pp. 2414-2418
    [3]
    Chen, G., Bi, Y.R., Li, N. Plant J., 41 (2005),pp. 364-375
    [4]
    Chen, T., Zhang, Y.D., Zhao, L. et al. Physiological character and gene mapping in a new green-revertible albino mutant in rice J. Genet. Genomics, 34 (2007),pp. 331-338
    [5]
    Eckhardt, U., Grimm, B., Hörtensteiner, S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants Plant Mol. Biol., 56 (2004),pp. 1-14
    [6]
    Gálová, E., Bohmová, B., SěvSěoviSěová, A. Analysis of some barley chlorophyll mutants and their response to temperature stress Photosynthetica, 38 (2000),pp. 29-35
    [7]
    He, R.F., Ding, Y., Yu, J.H. et al. The changes of chlorophyll content and several enzyme activities in zebra-leaf rice Journal of Wuhan University (Natural Sciences Edition), 46 (2000),pp. 761-765
    [8]
    Hirochika, H., Guiderdoni, E., An, G. et al. Rice mutant resources for gene discovery Plant Mol. Biol., 54 (2004),pp. 325-334
    [9]
    Huang, X.Q., Zhao, H.X., Dong, C.L. et al. Chlorophyll-deficit rice mutants and their research advances in Biology Acta Botanica Boreali-Occidentalia Sinica, 25 (2005),pp. 1685-1691
    [10]
    Iwata, N., Omura, T., Satoh, H. Linkage studies in rice. The sequence of genes at the eighth and eleventh linkage groups Japan J. Breed, 28 (1978),pp. 170-171
    [11]
    Iwata, N., Satoh, H., Omura, T. The relationships between chromosomes identified cytologically and linkage groups Rice Genet. Newsl., 1 (1984),pp. 128-132
    [12]
    Kosambi, D.D. The estimation of map distances from recombination values Ann. Eugen., 12 (1944),pp. 172-175
    [13]
    Lander, E.S., Green, P., Abrahamson, J. et al. Mapmarker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 1 (1987),pp. 174-181
    [14]
    Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes Method Enzymol., 48 (1987),pp. 350-382
    [15]
    Liu, W.Z., Fu, Y.P., Hu, G.C. et al. Planta, 226 (2007),pp. 785-795
    [16]
    Luo, Z.K., Yang, Z.L., Zhong, B.Q. et al. Genome, 50 (2007),pp. 811-817
    [17]
    Markwell, J., Osterman, J.C. Plant Physiol., 98 (1992),pp. 392-394
    [18]
    Mochizuki, N., Brusslan, J.A., Larkin, R. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 2053-2058
    [19]
    Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucl. Acids Res., 8 (1980),pp. 4321-4325
    [20]
    Panaud, O., Chen, X., McCouch, S.R. Mol. Gen. Genet., 259 (1996),pp. 597-607
    [21]
    Pasini, L., Bruschini, S., Bertoli, A. et al. Photosynthetic performance of cold-sensitive mutants of maize at low temperature Physiol. Plant, 124 (2005),pp. 362-370
    [22]
    Rüdiger, W. Chlorophyll metabolism: From outer space down to the molecular level Phytochemistry, 46 (1997),pp. 1151-1167
    [23]
    Sanchez, A.C., Khush, G.S. Seven new genes for zebra character in rice Rice Genetics Newsletter, 9 (1992),pp. 68-71
    [24]
    Sanchez, A.C., Khush, G.S. Chromosomal location of some marker genes in rice using the primary trisomics J. Hered., 85 (1994),pp. 297-300
    [25]
    Sanchez, A.C., Khush, G.S. L. SABRAO J. Breeding Genet., 30 (1998),pp. 51-60
    [26]
    Sang, X.C., Yang, Z.L., Zhong, B.Q. et al. Assessment of purity of rice CMS lines using cpDNA marker Euphytica, 152 (2006),pp. 177-183
    [27]
    Shao, J.R., Sun, J.S., Xie, R. Journal of Leshan Teachers College, 18 (2003),pp. 50-53
    [28]
    Shao, J.R., Tang, M., Xie, R. Relation ship between the change of protein and the content of chlorophyll in the leaves of temperature-sensitive chlorophyll mutant 1103s of rice during the period of appearing chequered with green and chlorosis Southwest China Journal of Agricultural Sciences, 11 (1998),pp. 14-19
    [29]
    Shao, J.R., Wang, Y.Z., Liu, Y.S. et al. Acta Botanica Sinica, 41 (1999),pp. 20-24
    [30]
    Shao, J.R., Zhou, S.C., Xie, R. Journal of Sichuan University (Natural Science Edition), 34 (1997),pp. 688-692
    [31]
    Sugimoto, H., Kusumi, K., Tozawa, Y. et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation Plant Cell Physiol., 45 (2004),pp. 985-996
    [32]
    Wu, Z.M., Zhang, X., He, B. et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis Plant Physiol., 145 (2007),pp. 29-40
    [33]
    Xie, R., Zeng, Z.M., Liu, C.Y. et al. Characteristics analysis of reverse mutation on green-yellow band trait in rice Southwest China Journal of Agricultural Sciences, 20 (2007),pp. 1-5
    [34]
    Yoshimura, A., Ideta, O., Iwata, N. Linkage map of phenotype and RFLP markers in rice Plant Mol. Biol., 35 (1997),pp. 49-60
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return