5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 11
Nov.  2009

Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.)

doi: 10.1016/S1673-8527(08)60160-5
More Information
  • Corresponding author: E-mail address: hegh1968@yahoo.com.cn (Guanghua He)
  • Received Date: 2009-06-26
  • Accepted Date: 2009-09-23
  • Rev Recd Date: 2009-08-23
  • Available Online: 2009-11-20
  • Publish Date: 2009-11-20
  • A novel zebra mutant, zebra-15, derived from the restorer line Jinhui10 (Oryza sativa L. ssp. indica) treated by EMS, displayed a distinctive zebra leaf from seedling stage to jointing stage. Its chlorophyll content decreased (55.4%) and the ratio of Chla/Chlb increased (90.2%) significantly in the yellow part of the zebra-15, compared with the wild type. Net photosynthetic rate and fluorescence kinetic parameters showed that the decrease of chlorophyll content significantly influenced the photosynthetic efficiency of the mutant. Genetic analysis of F2 segregation populations derived from the cross of Xinong1A and zebra-15 indicated that the zebra leaf trait is controlled by a single recessive nuclear gene. Ninety-eight out of four hundred and eighty pairs of SSR markers showed the diversity between the Xinong1A and the zebra-15, their F2 population was then used for gene mapping. Zebra-15 (Z-15) gene was primarily restricted on the short arm of chromosome 5 by 150 F2 recessive individuals, 19.6 cM from marker RM3322 and 6.0 cM from marker RM6082. Thirty-six SSR markers were newly designed in the restricted location, and the Z-15 was finally located between markers nSSR516 and nSSR502 with the physical region 258 kb by using 1,054 F2 recessive individuals.
  • [1]
    Abenes, M.L.P., Tabien, R.E., McCouch, S.R. et al. Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice Euphytica, 76 (1994),pp. 81-87
    [2]
    Alberte, R.S., Hesketh, J.D., Hofstra, G. et al. Composition and activity of the photosynthetic apparatus in temperature sensitive mutants of higher plants Proc. Natl. Acad. Sci. USA, 71 (1974),pp. 2414-2418
    [3]
    Chen, G., Bi, Y.R., Li, N. Plant J., 41 (2005),pp. 364-375
    [4]
    Chen, T., Zhang, Y.D., Zhao, L. et al. Physiological character and gene mapping in a new green-revertible albino mutant in rice J. Genet. Genomics, 34 (2007),pp. 331-338
    [5]
    Eckhardt, U., Grimm, B., Hörtensteiner, S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants Plant Mol. Biol., 56 (2004),pp. 1-14
    [6]
    Gálová, E., Bohmová, B., SěvSěoviSěová, A. Analysis of some barley chlorophyll mutants and their response to temperature stress Photosynthetica, 38 (2000),pp. 29-35
    [7]
    He, R.F., Ding, Y., Yu, J.H. et al. The changes of chlorophyll content and several enzyme activities in zebra-leaf rice Journal of Wuhan University (Natural Sciences Edition), 46 (2000),pp. 761-765
    [8]
    Hirochika, H., Guiderdoni, E., An, G. et al. Rice mutant resources for gene discovery Plant Mol. Biol., 54 (2004),pp. 325-334
    [9]
    Huang, X.Q., Zhao, H.X., Dong, C.L. et al. Chlorophyll-deficit rice mutants and their research advances in Biology Acta Botanica Boreali-Occidentalia Sinica, 25 (2005),pp. 1685-1691
    [10]
    Iwata, N., Omura, T., Satoh, H. Linkage studies in rice. The sequence of genes at the eighth and eleventh linkage groups Japan J. Breed, 28 (1978),pp. 170-171
    [11]
    Iwata, N., Satoh, H., Omura, T. The relationships between chromosomes identified cytologically and linkage groups Rice Genet. Newsl., 1 (1984),pp. 128-132
    [12]
    Kosambi, D.D. The estimation of map distances from recombination values Ann. Eugen., 12 (1944),pp. 172-175
    [13]
    Lander, E.S., Green, P., Abrahamson, J. et al. Mapmarker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 1 (1987),pp. 174-181
    [14]
    Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes Method Enzymol., 48 (1987),pp. 350-382
    [15]
    Liu, W.Z., Fu, Y.P., Hu, G.C. et al. Planta, 226 (2007),pp. 785-795
    [16]
    Luo, Z.K., Yang, Z.L., Zhong, B.Q. et al. Genome, 50 (2007),pp. 811-817
    [17]
    Markwell, J., Osterman, J.C. Plant Physiol., 98 (1992),pp. 392-394
    [18]
    Mochizuki, N., Brusslan, J.A., Larkin, R. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 2053-2058
    [19]
    Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucl. Acids Res., 8 (1980),pp. 4321-4325
    [20]
    Panaud, O., Chen, X., McCouch, S.R. Mol. Gen. Genet., 259 (1996),pp. 597-607
    [21]
    Pasini, L., Bruschini, S., Bertoli, A. et al. Photosynthetic performance of cold-sensitive mutants of maize at low temperature Physiol. Plant, 124 (2005),pp. 362-370
    [22]
    Rüdiger, W. Chlorophyll metabolism: From outer space down to the molecular level Phytochemistry, 46 (1997),pp. 1151-1167
    [23]
    Sanchez, A.C., Khush, G.S. Seven new genes for zebra character in rice Rice Genetics Newsletter, 9 (1992),pp. 68-71
    [24]
    Sanchez, A.C., Khush, G.S. Chromosomal location of some marker genes in rice using the primary trisomics J. Hered., 85 (1994),pp. 297-300
    [25]
    Sanchez, A.C., Khush, G.S. L. SABRAO J. Breeding Genet., 30 (1998),pp. 51-60
    [26]
    Sang, X.C., Yang, Z.L., Zhong, B.Q. et al. Assessment of purity of rice CMS lines using cpDNA marker Euphytica, 152 (2006),pp. 177-183
    [27]
    Shao, J.R., Sun, J.S., Xie, R. Journal of Leshan Teachers College, 18 (2003),pp. 50-53
    [28]
    Shao, J.R., Tang, M., Xie, R. Relation ship between the change of protein and the content of chlorophyll in the leaves of temperature-sensitive chlorophyll mutant 1103s of rice during the period of appearing chequered with green and chlorosis Southwest China Journal of Agricultural Sciences, 11 (1998),pp. 14-19
    [29]
    Shao, J.R., Wang, Y.Z., Liu, Y.S. et al. Acta Botanica Sinica, 41 (1999),pp. 20-24
    [30]
    Shao, J.R., Zhou, S.C., Xie, R. Journal of Sichuan University (Natural Science Edition), 34 (1997),pp. 688-692
    [31]
    Sugimoto, H., Kusumi, K., Tozawa, Y. et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation Plant Cell Physiol., 45 (2004),pp. 985-996
    [32]
    Wu, Z.M., Zhang, X., He, B. et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis Plant Physiol., 145 (2007),pp. 29-40
    [33]
    Xie, R., Zeng, Z.M., Liu, C.Y. et al. Characteristics analysis of reverse mutation on green-yellow band trait in rice Southwest China Journal of Agricultural Sciences, 20 (2007),pp. 1-5
    [34]
    Yoshimura, A., Ideta, O., Iwata, N. Linkage map of phenotype and RFLP markers in rice Plant Mol. Biol., 35 (1997),pp. 49-60
  • Relative Articles

    [1]Qingwen Jiang, Weimin Zhang, Chenghao Liu, Yicong Lin, Qingyu Wu, Junbiao Dai. Dissecting PCNA function with a systematically designed mutant library in yeast[J]. Journal of Genetics and Genomics, 2019, 46(6): 301-313. doi: 10.1016/j.jgg.2019.03.014
    [2]Wen Yao, Guangwei Li, Yanru Cui, Yiming Yu, Qifa Zhang, Shizhong Xu. Mapping quantitative trait loci using binned genotypes[J]. Journal of Genetics and Genomics, 2019, 46(7): 343-352. doi: 10.1016/j.jgg.2019.06.005
    [3]Yufeng Hua, Chun Wang, Jian Huang, Kejian Wang. A simple and efficient method for CRISPR/Cas9-induced mutant screening[J]. Journal of Genetics and Genomics, 2017, 44(4): 207-213. doi: 10.1016/j.jgg.2017.03.005
    [4]Qingjun Xie, Yan Liang, Jian Zhang, Huakun Zheng, Guojun Dong, Qian Qian, Jianru Zuo. Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence[J]. Journal of Genetics and Genomics, 2016, 43(3): 145-154. doi: 10.1016/j.jgg.2015.09.012
    [5]Junjie Yin, Xiaobo Zhu, Can Yuan, Jing Wang, Weitao Li, Yuping Wang, Min He, Qinshu Cheng, Bangquan Ye, Weilan Chen, Qianyan Linghu, Jichun Wang, Bingtian Ma, Peng Qin, Shigui Li, Xuewei Chen. Characterization and Fine Mapping of a Novel Vegetative Senescence Lethal Mutant Locus in Rice[J]. Journal of Genetics and Genomics, 2015, 42(9): 511-514. doi: 10.1016/j.jgg.2015.05.005
    [6]Qunyu Zhang, Dexing Xue, Xiaoyu Li, Yunming Long, Xianjie Zeng, Yaoguang Liu. Characterization and Molecular Mapping of a New Virescent Mutant in Rice[J]. Journal of Genetics and Genomics, 2014, 41(6): 353-356. doi: 10.1016/j.jgg.2014.01.010
    [7]Yuping Wang, Weilan Chen, Peng Qin, Yanyan Huang, Bingtian Ma, Xinhao Ouyang, Xuewei Chen, Shigui Li. Characterization and Fine Mapping of GLABROUS RICE 2 in Rice[J]. Journal of Genetics and Genomics, 2013, 40(11): 579-582. doi: 10.1016/j.jgg.2013.06.001
    [8]Lijing Wang, Shuai Han, Shiyi Zhong, Haizhong Wei, Yanjun Zhang, Yan Zhao, Baoshen Liu. Characterization and Fine Mapping of a Necrotic Leaf Mutant in Maize (Zea mays L.)[J]. Journal of Genetics and Genomics, 2013, 40(6): 307-314. doi: 10.1016/j.jgg.2013.04.004
    [9]Yu Peng, Yi Zhang, Jun Lv, Jianhui Zhang, Ping Li, Xiaoliang Shi, Yufeng Wang, Honglei Zhang, Zuhua He, Sheng Teng. Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1[J]. Journal of Genetics and Genomics, 2012, 39(8): 385-396. doi: 10.1016/j.jgg.2012.05.001
    [10]Mika Hayashi-Tsugane, Masahiko Maekawa, Qian Qian, Hirokazu Kobayashi, Shigeru Iida, Kazuo Tsugane. A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion[J]. Journal of Genetics and Genomics, 2011, 38(3): 123-128. doi: 10.1016/j.jgg.2011.02.004
    [11]Bosen Zhang, Feng Tian, Lubin Tan, Daoxin Xie, Chuanqing Sun. Characterization of a novel high-tillering dwarf 3 mutant in rice[J]. Journal of Genetics and Genomics, 2011, 38(9): 411-418. doi: 10.1016/j.jgg.2011.08.002
    [12]Wenyi Yan, Shenghai Ye, Qingsheng Jin, Longjun Zeng, Yu Peng, Dawei Yan, Weibing Yang, Donglei Yang, Zuhua He, Yanjun Dong, Xiaoming Zhang. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice[J]. Journal of Genetics and Genomics, 2010, 37(1): 47-55. doi: 10.1016/S1673-8527(09)60024-2
    [13]Liangyong Ma, Changdeng Yang, Dali Zeng, Jing Cai, Ximing Li, Zhijuan Ji, Yingwu Xia, Qian Qian, Jinsong Bao. Mapping QTLs for heading synchrony in a doubled haploid population of rice in two environments[J]. Journal of Genetics and Genomics, 2009, 36(5): 297-304. doi: 10.1016/S1673-8527(08)60118-6
    [14]Qibin Luo, Qing Zhou, Xiaomin Yu, Hongbin Lin, Songnian Hu, Jun Yu. Genome-wide mapping of conserved microRNAs and their host transcripts in Tribolium castaneum[J]. Journal of Genetics and Genomics, 2008, 35(6): 349-355. doi: 10.1016/S1673-8527(08)60051-X
    [15]Liang Jiang, Longbiao Guo, Hua Jiang, Dali Zeng, Jiang Hu, Liwen Wu, Jian Liu, Zhenyu Gao, Qian Qian. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice[J]. Journal of Genetics and Genomics, 2008, 35(12): 715-721. doi: 10.1016/S1673-8527(08)60226-X
    [16]Yi Zhang, Yunfeng Li, Jian Zhang, Fucheng Shen, Yuanxin Huang, Zhiwei Wu. Characterization and mapping of a new male sterility mutant of anther advanced dehiscence (t) in rice[J]. Journal of Genetics and Genomics, 2008, 35(3): 177-182. doi: 10.1016/S1673-8527(08)60024-7
    [17]Jinghu Zhang, Yuanzhu Xiong, Bo Zuo, Minggang Lei, Siwen Jiang, Feng'e Li, Rong Zheng, Jialian Li. Genetic Analysis and Linkage Mapping in a Resource Pig Population Using Microsatellite Markers[J]. Journal of Genetics and Genomics, 2007, 34(1): 10-16. doi: 10.1016/S1673-8527(07)60002-2
    [18]Yumei Li, Yang Xiang, Hongwen Deng, Zhenqiu Sun. An Entropy-based Index for Fine-scale Mapping of Disease Genes[J]. Journal of Genetics and Genomics, 2007, 34(7): 661-668. doi: 10.1016/S1673-8527(07)60075-7
    [19]Quanfang Zhang, Jiandi Xu, Yun Li, Peizhou Xu, Hongyu Zhang, Xianjun Wu. Morphological, Anatomical and Genetic Analysis for a Rice Mutant with Abnormal Hull[J]. Journal of Genetics and Genomics, 2007, 34(6): 519-526. doi: 10.1016/S1673-8527(07)60057-5
    [20]Tao Chen, Yadong Zhang, Ling Zhao, Zhen Zhu, Jing Lin, Suobing Zhang, Cailin Wang. Physiological Character and Gene Mapping in a New Green- revertible Albino Mutant in Rice[J]. Journal of Genetics and Genomics, 2007, 34(4): 331-338. doi: 10.1016/S1673-8527(07)60035-6
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.7 %FULLTEXT: 24.7 %META: 75.3 %META: 75.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.9 %其他: 1.9 %Belgium: 3.9 %Belgium: 3.9 %China: 40.3 %China: 40.3 %Russian Federation: 6.5 %Russian Federation: 6.5 %United States: 47.4 %United States: 47.4 %其他BelgiumChinaRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return