5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 11
Nov.  2009
Turn off MathJax
Article Contents

Analysis of collinear regions of Oryza AA and CC genomes

doi: 10.1016/S1673-8527(08)60159-9
More Information
  • Corresponding author: E-mail address: bhan@ncgr.ac.cn (Bin Han)
  • Received Date: 2009-06-03
  • Accepted Date: 2009-10-12
  • Rev Recd Date: 2009-09-25
  • Available Online: 2009-11-20
  • Publish Date: 2009-11-20
  • Comparative analyses of genome structure and sequence of closely related species have yielded insights into the evolution and function of plant genomes. A total of 103,844 BAC end sequences delegated ∼73.8 Mb of O. officinalis that belongs to the CC genome type of the rice genus Oryza were obtained and compared with the genome sequences of rice cultivar, O. sativa ssp. japonica cv. Nipponbare. We found that more than 45% ofO. officinalis genome consists of repeat sequences, which is higher than that of Nipponbare cultivar. To further investigate the evolutionary divergence of AA and CC genomes, two BAC-contigs of O. officinalis were compared with the collinear genomic regions of Nipponbare. Of 57 genes predicted in the AA genome orthologous regions, 39 had orthologs in the regions of the CC genome. Alignment of the orthologous regions indicated that the CC genome has undergone expansion in both genic and intergenic regions through primarily retroelement insertion. Particularly, the density of RNA transposable elements was 17.95% and 1.78% in O. officinalis and O. sativa, respectively. This explains why the orthologous region is about 100 kb longer in the CC genome in comparison to the AA genome.
  • loading
  • [1]
    Ammiraju, J-S.S., Lu, F., Sanyal, A. et al. Plant Cell, 20 (2008),pp. 3191-3209
    [2]
    Ammiraju, J-S.S., Zuccolo, A., Yu, Y. et al. Plant J., 52 (2007),pp. 342-351
    [3]
    Arumuganathan, K., Earle, E.D. Nuclear DNA content of some important plant species Plant Mol. Biol. Rep., 9 (1991),pp. 208-218
    [4]
    Bennetzen, J.L. Patterns in grass genome evolution Curr. Opin. Plant Biol., 10 (2007),pp. 176-181
    [5]
    Bruggmann, R., Bharti, A.K., Gundlach, H. et al. Uneven chromosome contraction and expansion in the maize genome Genome Res., 16 (2006),pp. 1241-1251
    [6]
    Feng, Q., Zhang, Y.J., Hao, P. et al. Sequence and analysis of rice chromosome 4 Nature, 420 (2002),pp. 316-320
    [7]
    Ge, S., Sang, T., Lu, B.R. et al. Phylogeny of rice genomes with emphasis on origins of allotetraploid species Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 14400-14405
    [8]
    Huang, X.H., Lu, G.J., Zhao, Q. et al. Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice Plant Physiol., 148 (2008),pp. 25-40
    [9]
    International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [10]
    Jain, M., Nijhawan, A., Arora, R. et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress Plant Physiol., 143 (2007),pp. 1467-1483
    [11]
    Kim, H., Hurwitz, B., Yu, Y. et al. Genome Biol., 9 (2008),pp. R45.1-R4515
    [12]
    Kim, H., SanMiguel, P., Nelson, W. et al. Genetics, 176 (2007),pp. 379-390
    [13]
    Lu, F., Ammiraju, J-S.S., Sanyal, A. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 2071-2076
    [14]
    Luo, M.Z., Wing, R.A. An improved method for plant BAC library construction Methods Mol. Biol., 236 (2003),pp. 3-20
    [15]
    Ma, J.X., Wing, R.A., Bennetzen, J.L. et al. Evolutionary history and positional shift of a rice centromere Genetics, 177 (2007),pp. 1217-1220
    [16]
    Mao, L., Wood, T.C., Yu, Y. et al. Rice transposable elements: A survey of 73,000 Sequence-Tagged-Connectors Genome Res., 10 (2000),pp. 982-990
    [17]
    Mayor, C., Brudno, M., Schwartz, J.R. et al. VISTA: Visualizing global DNA sequence alignments of arbitrary length Bioinformatics, 16 (2000),pp. 1046-1047
    [18]
    Piegu, B., Guyot, R., Picault, N. et al. Genome Res., 16 (2006),pp. 1262-1269
    [19]
    Sasaki, T., Burr, B. International rice genome sequencing project: The effort to completely sequence the rice genome Curr. Opin. Plant Biol., 3 (2000),pp. 138-141
    [20]
    Tang, H.B., Bowers, J.E., Wang, X.Y. et al. Synteny and collinearity in plant genomes Science, 320 (2008),pp. 486-488
    [21]
    Vaughan, D.A.
    [22]
    Wing, R.A., Ammiraju, J-S.S., Luo, M.Z. et al. The Oryza Map Alignment Project: The golden path to unlocking the genetic potential of wild rice species Plant Mol. Biol., 59 (2005),pp. 53-62
    [23]
    Yang, Z.H., Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models Mol. Biol. Evol., 17 (2000),pp. 32-43
    [24]
    Zhang, S.B., Gu, Y.Q., Singh, J. et al. Plant Mol. Biol., 64 (2007),pp. 589-600
    [25]
    Zhang, Z., Li, J., Zhao, X.Q. et al. KaKs Calculator: Calculating Ka and Ks through model selection and model averaging Genomics Proteomics Bioinformatics., 4 (2006),pp. 259-263
    [26]
    Zou, X.H., Zhang, F.M., Zhang, J.G. et al. Analysis of 142 genes resolves the rapid diversification of the rice genus Genome Biol., 9 (2008),pp. R49.1-R4913
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return