5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 11
Nov.  2009
Turn off MathJax
Article Contents

An integrated view of the correlations between genomic and phenomic variables

doi: 10.1016/S1673-8527(08)60156-3
More Information
  • Corresponding author: E-mail address: hefc@nic.bmi.ac.cn (Fuchu He)
  • Received Date: 2009-07-06
  • Accepted Date: 2009-09-24
  • Rev Recd Date: 2009-09-18
  • Available Online: 2009-11-20
  • Publish Date: 2009-11-20
  • Genome sequencing opened the flood gate of “-omics” studies, among which the research about correlations between genomic and phenomic variables is an important part. With the development of functional genomics and systems biology, genome-wide investigation of the correlations between many genomic and phenomic variables became possible. In this review, five genomic variables, such as evolution rate (or “age” of the gene), the length of intron and ORF (protein length) in one gene, the biases of amino acid composition and codon usage, along with the phenomic variables related to expression patterns (level and breadth) are focused on. In most cases, genes with higher mRNA/protein expression level tend to evolve slowly, have less intronic DNA, code for smaller proteins, and have higher biases of amino acid composition and codon usage. In addition, broadly expressed proteins evolve more slowly and are shorter than tissue-specific proteins. Studies in this field are helpful for deeper understanding the signatures of selection mediated by the features of gene expression and are of great significance to enrich the evolution theory.
  • loading
  • [1]
    Akashi, H. Genetics, 136 (1994),pp. 927-935
    [2]
    Akashi, H., Gojobori, T. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 3695-3700
    [3]
    Bloom, J.D., Adami, C. Apparent dependence of protein evolution rate on number of interactions is linked to biases in protein-protein interactions data sets BMC Evol. Biol., 3 (2003),p. 21
    [4]
    Bulmer, M. Coevolution of codon usage and transfer RNA abundance Nature, 325 (1987),pp. 728-730
    [5]
    Choi, J.K., Kim, S.C., Seo, J. et al. Impact of transcriptional properties on essentiality and evolution rate Genetics, 175 (2007),pp. 199-206
    [6]
    Coghlan, A., Wolfe, K.H. Yeast, 16 (2000),pp. 1131-1145
    [7]
    Castillo-Davis, C.I., Mekhedov, S.L., Hartl, D.L. et al. Selection for short introns in highly expressed genes Nat Genet., 31 (2002),pp. 415-418
    [8]
    Debry, R.W., Marzluff, W.F. Selection on silent sites in the rodent H3 histone gene family Genetics, 138 (1994),pp. 191-202
    [9]
    Dix, D.B., Thompson, R.C. Codon choice and gene-expression—Synonymous codons differ in translational accuracy Proc. Natl. Acad. Sci. USA, 86 (1989),pp. 6888-6892
    [10]
    Dos Reis, M., Wernisch, L Estimating translational selection in eukaryotic genomes Mol. Biol. Evol., 26 (2009),pp. 451-461
    [11]
    Draghi, J., Wagner, G.P. The evolutionary dynamics of evolvability in a gene network model J. Evol. Biol., 22 (2009),pp. 599-611
    [12]
    Drummond, D.A., Bloom, J.D., Adami, C. et al. Why highly expressed proteins evolve slowly Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 14338-14343
    [13]
    Drummond, D.A., Raval, A., Wilke, C.O. A single determinant dominates the rate of yeast protein evolution Mol. Biol. Evol., 23 (2006),pp. 327-337
    [14]
    Drummond, D.A., Wilke, C.O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution Cell, 134 (2008),pp. 341-352
    [15]
    Duret, L., Mouchiroud, D. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 4482-4487
    [16]
    Duret, L., Mouchiroud, D. Determinants of substitution rates in mammalian genes: Expression pattern affects selection intensity but not mutation rate Mol. Biol. Evol., 17 (2000),pp. 68-74
    [17]
    Eyre-Walker, A. An analysis of codon usage in mammals: Selection or mutation bias? J. Mol. Evol., 33 (1991),pp. 442-449
    [18]
    Fraser, H.B., Hirsh, A.E., Steinmetz, L.M. et al. Evolution rate in the protein interaction network Science, 296 (2002),pp. 750-752
    [19]
    Futcher, B., Latter, G.I., Monardo, P. et al. A sampling of the yeast proteome Mol. Cell Biol., 19 (1999),pp. 7357-7368
    [20]
    Gouy, M., Gautier, C. Codon usage in bacteria—Correlation with gene expressivity Nucleic Acids Res., 10 (1982),pp. 7055-7074
    [21]
    Greenbaum, D., Jansen, R., Gerstein, M. Analysis of mRNA expression and protein abundance data: An approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts Bioinformatics, 18 (2002),pp. 585-596
    [22]
    Grosjean, H., Fiers, W. Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes Gene, 18 (1982),pp. 199-209
    [23]
    Hahn, M.W., Conant, G.C., Wagner, A. Molecular evolution in large genetic networks: Does connectivity equal constraint? J. Mol. Evol., 58 (2004),pp. 203-211
    [24]
    Hillenmeyer, M.E., Fung, E., Wildenhain, J. et al. The chemical genomic portrait of yeast: Uncovering a phenotype for all genes Science, 320 (2008),pp. 362-365
    [25]
    Hirsh, A.E., Fraser, H.B. Protein dispensability and rate of evolution Nature, 411 (2001),pp. 1046-1049
    [26]
    Hurst, L.D., Smith, N.G. Do essential genes evolve slowly? Curr Biol., 9 (1999),pp. 747-750
    [27]
    Iida, K., Akashi, H. A test of translational selection at ‘silent’ sites in the human genome: Base composition comparisons in alternatively spliced genes Gene, 261 (2000),pp. 93-105
    [28]
    Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms Mol. Biol. Evol., 2 (1985),pp. 13-34
    [29]
    Ingvarsson, P.K. Mol. Biol. Evol., 24 (2007),pp. 836-844
    [30]
    Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms Mol. Biol. Evol., 2 (1985),pp. 13-34
    [31]
    Ishihama, Y., Schmidt, T., Rappsilber, J. et al. BMC Genomics, 9 (2008),p. 102
    [32]
    Jansen, R., Gerstein, M. Analysis of the yeast transcriptome with structural and functional categories: Characterizing highly expressed genes Nucleic Acids Res., 28 (2000),pp. 1481-1488
    [33]
    Jordan, I.K., Rogozin, I.B., Wolf, Y.I. et al. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria Genome Res., 12 (2002),pp. 962-968
    [34]
    Koonin, E.V. Darwinian evolution in the light of genomics Nucleic Acids Res., 37 (2009),pp. 1011-1034
    [35]
    Krylov, D.M., Wolf, Y.I., Rogozin, I.B. et al. Gene loss, protein sequence divergence, gene dispensability, expression level, interactivity are correlated in eukaryotic evolution Genome Res., 13 (2003),pp. 2229-2235
    [36]
    Lemos, B., Bettencourt, B.R., Meiklejohn, C.D. et al. Mol. Biol. Evol., 22 (2005),pp. 1345-1354
    [37]
    Liao, B.Y., Zhang, J. Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution Mol. Biol. Evol., 23 (2006),pp. 1119-1128
    [38]
    Lipman, D.J., Souvorov, A., Koonin, E.V. et al. The relationship of protein conservation and sequence length BMC Evol. Biol., 2 (2002),p. 20
    [39]
    Mezey, J.G., Cheverud, J.M., Wagner, G.P. Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data Genetics, 156 (2000),pp. 305-311
    [40]
    Pal, C., Papp, B., Hurst, L.D. Highly expressed genes in yeast evolve slowly Genetics, 158 (2001),pp. 927-931
    [41]
    Pál, C., Papp, B., Lercher, M.J. An integrated view of protein evolution Nat. Rev. Genet., 7 (2006),pp. 337-348
    [42]
    Popescu, C.E., Borza, T., Bielawski, J.P. et al. Evolution rates and expression level in Chlamydomonas Genetics, 172 (2006),pp. 1567-1576
    [43]
    Ren, X.Y., Vorst, O., Fiers, M. et al. In plants, highly expressed genes are the least compact Trends Genet., 22 (2006),pp. 528-532
    [44]
    Rocha, E.P., Danchin, A. An analysis of determinants of amino acids substitution rates in bacterial proteins Mol. Biol. Evol., 21 (2004),pp. 108-116
    [45]
    Schrimpf, S.P., Weiss, M., Reiter, L. et al. PLoS Biol., 7 (2009),p. e48
    [46]
    Shakhnovich, B.E., Koonin, E.V. Origins and impact of constraints in evolution of gene families Genome Res., 16 (2006),pp. 1529-1536
    [47]
    Sharp, P.M., Averof, M., Lloyd, A.T. et al. DNA-sequence evolution—The sounds of silence Phil. Trans. R Soc. Lond. B, 349 (1995),pp. 241-247
    [48]
    Sharp, P.M., Tuohy, T.M.F., Mosurski, K.R. Codon usage in yeast—Cluster-analysis clearly differentiates highly and lowly expressed genes Nucleic Acids Res., 14 (1986),pp. 5125-5143
    [49]
    Smith, N.G.C., Hurst, L.D. The effect of tandem substitutions on the correlation between synonymous and nonsynonymous rates in rodents Genetics, 153 (1999),pp. 1395-1402
    [50]
    Sprinzl, M., Steegborn, C., Hubel, F. et al. Compilation of tRNA sequences and sequences of tRNA genes Nucleic Acids Res., 24 (1996),pp. 68-72
    [51]
    Subramanian, S., Kumar, S. Gene expression intensity shapes evolution rates of the proteins encoded by the vertebrate genome Genetics, 168 (2004),pp. 373-381
    [52]
    Urrutia, A.O., Hurst, L.D. Codon bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection Genetics, 159 (2001),pp. 1191-1199
    [53]
    Urrutia, A.O., Hurst, L.D. The signature of selection mediated by expression on human genes Genome Res., 3 (2003),pp. 2260-2264
    [54]
    Warringer, J., Blomberg, A. Evolutionary constraints on yeast protein size BMC Evol. Biol., 6 (2006),p. 61
    [55]
    Wilson, A.C., Carlson, S.S., White, T.J. Biochemical evolution Annu. Rev. Biochem., 46 (1977),pp. 573-639
    [56]
    Wolf, Y.I., Novichkov, P.S., Karev, G.P. et al. Inaugural Article: The universal distribution of evolution rates of genes and distinct characteristics of eukaryotic genes of different apparent ages Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 7273-7280
    [57]
    Wolf, M.Y., Wolf, Y.I., Koonin, E.V. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution Biol. Direct., 3 (2008),p. 40
    [58]
    Wolf, Y.I., Carmel, L., Koonin, E.V. Unifying measures of gene function and evolution Proc. Biol. Sci., 273 (2006),pp. 1507-1515
    [59]
    Wright, S.I., Yau, C.B., Looseley, M. et al. Mol. Biol. Evol., 21 (2004),pp. 1719-1726
    [60]
    Zuckerkandl, E. Evolutionary processes and evolutionary noise at the molecular level (I): Functional density in proteins J. Mol. Evol., 7 (1976),pp. 167-183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return