5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 9
Sep.  2009
Turn off MathJax
Article Contents

An overview of plant centromeres

doi: 10.1016/S1673-8527(08)60144-7
More Information
  • Corresponding author: E-mail address: weiweijin@cau.edu.cn (Weiwei Jin)
  • Received Date: 2009-02-13
  • Accepted Date: 2009-04-27
  • Rev Recd Date: 2009-04-18
  • Available Online: 2009-09-25
  • Publish Date: 2009-09-20
  • The centromere is a defining region that mediates chromosome attachment to kinetochore microtubules and proper segregation of the sister chromatids. Intriguingly, satellite DNA and centromeric retrotransposon as major DNA constituents of centromere showed baffling diversification and species-specific. However, the key kinetochore proteins are conserved in both plants and animals, particularly the centromere-specific histone H3-like protein (CENH3) in all functional centromeres. Recent studies have highlighted the importance of epigenetic mechanisms in the establishment and maintenance of centromere identity. Here, we review the progress and compendium of research on plant centromere in the light of recent data.
  • loading
  • [1]
    Alfenito, M.R., Birchler, J.A. Molecular characterization of a maize B chromosome centric sequence Genetics, 135 (1993),pp. 589-597
    [2]
    Alonso, A., Fritz, B., Hasson, D. et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres Genome Biol., 8 (2007),p. R148
    [3]
    Ananiev, E.V., Phillips, R.L., Rines, H.W. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 13073-13078
    [4]
    Black, B.E., Bassett, E.A. The histone variant CENP-A and centromere specification Curr. Opin. Cell Biol., 20 (2008),pp. 91-100
    [5]
    Black, B.E., Foltz, D.R., Chakravarthy, S. et al. Structural determinants for generating centromeric chromatin Nature, 29 (2004),pp. 578-582
    [6]
    Blower, M.D., Sullivan, B.A., Karpen, G.H. Conserved organization of centromeric chromatin in flies and humans Dev. Cell, 2 (2002),pp. 319-330
    [7]
    Bouck, D., Bloom, K. The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment Biochem. Cell Biol., 83 (2005),pp. 696-702
    [8]
    Camahort, R., Li, B., Florens, L. et al. Scm3 is essential to recruit the histone H3 variant cse4 to centromeres and to maintain a functional kinetochore Mol. Cell, 26 (2007),pp. 853-865
    [9]
    Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore Cell, 127 (2006),pp. 983-997
    [10]
    Cheng, Z., Dong, F., Langdon, T. et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon Plant Cell, 14 (2002),pp. 1691-1704
    [11]
    Collins, K.A., Furuyama, S., Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant Curr. Biol., 14 (2004),pp. 1968-1972
    [12]
    Crotti, L.B., Basrai, M.A. EMBO J., 23 (2004),pp. 1804-1814
    [13]
    Dalal, Y., Wang, H., Lindsay, S. et al. PLoS Biol., 5 (2007),p. e218
    [14]
    Dawe, R.K., Hiatt, E.N. Plant neocentromeres: fast, focused, and driven Chromosome Res., 12 (2004),pp. 655-669
    [15]
    Dawe, R.K., Reed, L.M., Yu, H.G. et al. A maize homolog of mammalian CENP-C is a constitutive component of the inner kinetochore Plant Cell, 11 (1999),pp. 1227-1238
    [16]
    Folco, H.D., Pidoux, A.L., Urano, T. et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres Science, 319 (2008),pp. 94-97
    [17]
    Fransz, P.F., Armstrong, S., Jong, J.H. et al. Cell, 100 (2000),pp. 367-376
    [18]
    Fujita, Y., Hayashi, T., Kiyomitsu, T. et al. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1 Dev. Cell 1, 2 (2007),pp. 17-30
    [19]
    Furuyama, T., Dalal, Y., Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 6172-6177
    [20]
    Harrison, G.E., Heslop-Harrison, J.S. Theor. Appl. Genet., 90 (1995),pp. 157-165
    [21]
    Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
    [22]
    Henikoff, S., Ahmad, K., Platero, J.S. et al. Heterochromatic deposition of centromeric histone H3-like proteins Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 716-721
    [23]
    Heslop-Harrison, J.S., Brandes, A., Schwarzacher, T. Chromosome Res., 11 (2003),pp. 241-253
    [24]
    Heslop-Harrison, J.S., Murata, M., Ogura, Y. et al. Plant Cell, 11 (1999),pp. 31-42
    [25]
    Hiatt, E.N., Kentner, E.K., Dawe, R.K. Independently regulated neocentromere activity of two classes of satellite sequences in maize Plant Cell, 14 (2002),pp. 407-420
    [26]
    Hudakova, S., Michalek, W., Presting, G.G. et al. Sequence organization of barley centromeres Nucleic Acids Res., 29 (2001),pp. 5029-5035
    [27]
    Ito, H., Nasuda, S., Endo, T.R. A direct repeat sequence associated with the centromeric retrotransposons in wheat Genome, 47 (2004),pp. 747-756
    [28]
    Jiang, J., Nasuda, S., Dong, F. et al. A conserved repetitive DNA element located in the centromeres of cereal chromosomes Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 14210-14213
    [29]
    Jin, W., Melo, J.R., Nagaki, K. et al. Maize centromeres: Organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
    [30]
    Jin, W., Lamb, J.C., Vega, J.M. et al. Molecular and functional dissection of the maize B centromere Plant Cell, 17 (2005),pp. 1412-1423
    [31]
    Kamm, A., Galasso, I., Schmidt, T. et al. Plant Mol. Biol., 27 (1995),pp. 853-862
    [32]
    Kishii, M., Nagaki, K., Tsujimoto, H. Chromosome Res., 9 (2001),pp. 417-428
    [33]
    Lam, A.L., Boivin, C.D., Bonney, C.F. et al. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 4186-4191
    [34]
    Lamb, J.C., Meyer, J.M., Birchler, J.A. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region Chromosoma, 116 (2007),pp. 237-247
    [35]
    Lee, H.R., Zhang, W.L., Langdon, T. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11793-11798
    [36]
    Lermontova, I., Schubert, V., Fuchs, J. et al. Plant Cell, 18 (2006),pp. 2443-2451
    [37]
    Liu, Z., Yue, W., Li, D. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres Chromosoma, 117 (2008),pp. 445-456
    [38]
    Luger, K., Mäder, A.W., Richmond, R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution Nature, 389 (1997),pp. 251-260
    [39]
    Ma, J., Wing, R.A., Bennetzen, J.L. et al. Evolutionary history and positional shift of a rice centromere Genetics, 177 (2007),pp. 1217-1220
    [40]
    Meraldi, P., McAinsh, A.D., Rheinbay, E. et al. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins Genome Biol., 7 (2006),p. R23
    [41]
    Mizuguchi, G., Xiao, H., Wisniewski, J. et al. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes Cell, 129 (2007),pp. 1153-1164
    [42]
    Nagaki, K., Murata, M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane Chromosome Res., 13 (2005),pp. 195-203
    [43]
    Nagaki, K., Cheng, Z., Ouyang, S. et al. Sequencing of a rice centromere uncovers active genes Nat. Genet., 36 (2004),pp. 138-145
    [44]
    Nagaki, K., Song, J., Stupar, R.M. et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres Genetics, 163 (2003),pp. 759-770
    [45]
    Ogura, Y., Shibata, F., Sato, H. et al. Genes Genet. Syst., 79 (2004),pp. 139-144
    [46]
    Page, B.T., Wanous, M.K., Birchler, J.A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere Genetics, 159 (2001),pp. 291-302
    [47]
    Palmer, D.K., O'Day, K., Trong, H.L. et al. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 3734-3738
    [48]
    Rhoades, M.M., Vilkomerson, H. On the anaphase movement of chromosomes Proc. Natl. Acad. Sci. USA, 28 (1942),pp. 433-443
    [49]
    Sato, H., Shibata, F., Murata, M. Chromosome Res., 13 (2005),pp. 827-834
    [50]
    Sharp, J.A., Franco, A.A., Osley, M.A. et al. Genes Dev., 16 (2002),pp. 85-100
    [51]
    Sharp, J.A., Krawitz, D.C., Gardner, K.A. et al. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin Genes Dev., 17 (2003),pp. 2356-2361
    [52]
    Shi, J., Dawe, R.K. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27 Genetics 1, 73 (2006),pp. 1571-1583
    [53]
    Stoler, S., Keith, K.C., Curnick, K.E. et al. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis Genes Dev., 5 (1995),pp. 573-586
    [54]
    Sullivan, B.A., Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin Nat. Struct. Mol. Biol., 11 (2004),pp. 1076-1083
    [55]
    Talbert, P.B., Bryson, T.D., Henikoff, S. Adaptive evolution of centromere proteins in plants and animals J. Biol., 3 (2004),p. e18
    [56]
    Talbert, P.B., Masuelli, R., Tyagi, A.P. et al. Plant Cell, 14 (2002),pp. 1053-1066
    [57]
    Takahashi, K., Takayama, Y., Masuda, F. et al. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle Philos. Trans. R. Soc. Lond., B, Biol. Sci., 360 (2005),pp. 595-606
    [58]
    Williams, B., Leung, G., Maiato, H. et al. J. Cell Sci., 120 (2007),pp. 3522-3533
    [59]
    Williams, J.S., Hayashi, T., Yanagida, M. et al. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin Mol. Cell, 33 (2009),pp. 287-298
    [60]
    Wong, N.C., Wong, L.H., Quach, J.M. et al. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation PLoS Genet., 2 (2006),p. e17
    [61]
    Wu, J., Yamagata, H., Hayashi-Tsugane, M. et al. Composition and structure of the centromeric region of rice chromosome 8 Plant Cell, 169 (2004),pp. 67-76
    [62]
    Xia, X., Selvaraj, G., Bertrand, H. Plant Mol. Biol., 21 (1993),pp. 213-224
    [63]
    Yan, H., Ito, H., Nobuta, K. et al. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere Plant Cell, 18 (2006),pp. 2123-2133
    [64]
    Zhang, W., Lee, H.R., Koo, D.H. et al. Plant Cell, 20 (2008),pp. 25-34
    [65]
    Zhang, W., Mellone, B.G., Karpen, G.H. A specialized nucleosome has a “point” to make Cell, 129 (2007),pp. 1047-1049
    [66]
    Zhang, Y., Huang, Y., Zhang, L. et al. Structural features of the rice chromosome 4 centromere Nucleic Acids Res., 32 (2004),pp. 2023-2030
    [67]
    Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
    [68]
    Zwick, M.S., Islam-Faridi, M.N., Zhang, H.B. et al. Am. J. Bot., 87 (2000),pp. 1757-1764
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return