[1] |
Alfenito, M.R., Birchler, J.A. Molecular characterization of a maize B chromosome centric sequence Genetics, 135 (1993),pp. 589-597
|
[2] |
Alonso, A., Fritz, B., Hasson, D. et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres Genome Biol., 8 (2007),p. R148
|
[3] |
Ananiev, E.V., Phillips, R.L., Rines, H.W. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 13073-13078
|
[4] |
Black, B.E., Bassett, E.A. The histone variant CENP-A and centromere specification Curr. Opin. Cell Biol., 20 (2008),pp. 91-100
|
[5] |
Black, B.E., Foltz, D.R., Chakravarthy, S. et al. Structural determinants for generating centromeric chromatin Nature, 29 (2004),pp. 578-582
|
[6] |
Blower, M.D., Sullivan, B.A., Karpen, G.H. Conserved organization of centromeric chromatin in flies and humans Dev. Cell, 2 (2002),pp. 319-330
|
[7] |
Bouck, D., Bloom, K. The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment Biochem. Cell Biol., 83 (2005),pp. 696-702
|
[8] |
Camahort, R., Li, B., Florens, L. et al. Scm3 is essential to recruit the histone H3 variant cse4 to centromeres and to maintain a functional kinetochore Mol. Cell, 26 (2007),pp. 853-865
|
[9] |
Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore Cell, 127 (2006),pp. 983-997
|
[10] |
Cheng, Z., Dong, F., Langdon, T. et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon Plant Cell, 14 (2002),pp. 1691-1704
|
[11] |
Collins, K.A., Furuyama, S., Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant Curr. Biol., 14 (2004),pp. 1968-1972
|
[12] |
Crotti, L.B., Basrai, M.A. EMBO J., 23 (2004),pp. 1804-1814
|
[13] |
Dalal, Y., Wang, H., Lindsay, S. et al. PLoS Biol., 5 (2007),p. e218
|
[14] |
Dawe, R.K., Hiatt, E.N. Plant neocentromeres: fast, focused, and driven Chromosome Res., 12 (2004),pp. 655-669
|
[15] |
Dawe, R.K., Reed, L.M., Yu, H.G. et al. A maize homolog of mammalian CENP-C is a constitutive component of the inner kinetochore Plant Cell, 11 (1999),pp. 1227-1238
|
[16] |
Folco, H.D., Pidoux, A.L., Urano, T. et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres Science, 319 (2008),pp. 94-97
|
[17] |
Fransz, P.F., Armstrong, S., Jong, J.H. et al. Cell, 100 (2000),pp. 367-376
|
[18] |
Fujita, Y., Hayashi, T., Kiyomitsu, T. et al. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1 Dev. Cell 1, 2 (2007),pp. 17-30
|
[19] |
Furuyama, T., Dalal, Y., Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 6172-6177
|
[20] |
Harrison, G.E., Heslop-Harrison, J.S. Theor. Appl. Genet., 90 (1995),pp. 157-165
|
[21] |
Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
|
[22] |
Henikoff, S., Ahmad, K., Platero, J.S. et al. Heterochromatic deposition of centromeric histone H3-like proteins Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 716-721
|
[23] |
Heslop-Harrison, J.S., Brandes, A., Schwarzacher, T. Chromosome Res., 11 (2003),pp. 241-253
|
[24] |
Heslop-Harrison, J.S., Murata, M., Ogura, Y. et al. Plant Cell, 11 (1999),pp. 31-42
|
[25] |
Hiatt, E.N., Kentner, E.K., Dawe, R.K. Independently regulated neocentromere activity of two classes of satellite sequences in maize Plant Cell, 14 (2002),pp. 407-420
|
[26] |
Hudakova, S., Michalek, W., Presting, G.G. et al. Sequence organization of barley centromeres Nucleic Acids Res., 29 (2001),pp. 5029-5035
|
[27] |
Ito, H., Nasuda, S., Endo, T.R. A direct repeat sequence associated with the centromeric retrotransposons in wheat Genome, 47 (2004),pp. 747-756
|
[28] |
Jiang, J., Nasuda, S., Dong, F. et al. A conserved repetitive DNA element located in the centromeres of cereal chromosomes Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 14210-14213
|
[29] |
Jin, W., Melo, J.R., Nagaki, K. et al. Maize centromeres: Organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
|
[30] |
Jin, W., Lamb, J.C., Vega, J.M. et al. Molecular and functional dissection of the maize B centromere Plant Cell, 17 (2005),pp. 1412-1423
|
[31] |
Kamm, A., Galasso, I., Schmidt, T. et al. Plant Mol. Biol., 27 (1995),pp. 853-862
|
[32] |
Kishii, M., Nagaki, K., Tsujimoto, H. Chromosome Res., 9 (2001),pp. 417-428
|
[33] |
Lam, A.L., Boivin, C.D., Bonney, C.F. et al. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 4186-4191
|
[34] |
Lamb, J.C., Meyer, J.M., Birchler, J.A. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region Chromosoma, 116 (2007),pp. 237-247
|
[35] |
Lee, H.R., Zhang, W.L., Langdon, T. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11793-11798
|
[36] |
Lermontova, I., Schubert, V., Fuchs, J. et al. Plant Cell, 18 (2006),pp. 2443-2451
|
[37] |
Liu, Z., Yue, W., Li, D. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres Chromosoma, 117 (2008),pp. 445-456
|
[38] |
Luger, K., Mäder, A.W., Richmond, R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution Nature, 389 (1997),pp. 251-260
|
[39] |
Ma, J., Wing, R.A., Bennetzen, J.L. et al. Evolutionary history and positional shift of a rice centromere Genetics, 177 (2007),pp. 1217-1220
|
[40] |
Meraldi, P., McAinsh, A.D., Rheinbay, E. et al. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins Genome Biol., 7 (2006),p. R23
|
[41] |
Mizuguchi, G., Xiao, H., Wisniewski, J. et al. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes Cell, 129 (2007),pp. 1153-1164
|
[42] |
Nagaki, K., Murata, M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane Chromosome Res., 13 (2005),pp. 195-203
|
[43] |
Nagaki, K., Cheng, Z., Ouyang, S. et al. Sequencing of a rice centromere uncovers active genes Nat. Genet., 36 (2004),pp. 138-145
|
[44] |
Nagaki, K., Song, J., Stupar, R.M. et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres Genetics, 163 (2003),pp. 759-770
|
[45] |
Ogura, Y., Shibata, F., Sato, H. et al. Genes Genet. Syst., 79 (2004),pp. 139-144
|
[46] |
Page, B.T., Wanous, M.K., Birchler, J.A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere Genetics, 159 (2001),pp. 291-302
|
[47] |
Palmer, D.K., O'Day, K., Trong, H.L. et al. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 3734-3738
|
[48] |
Rhoades, M.M., Vilkomerson, H. On the anaphase movement of chromosomes Proc. Natl. Acad. Sci. USA, 28 (1942),pp. 433-443
|
[49] |
Sato, H., Shibata, F., Murata, M. Chromosome Res., 13 (2005),pp. 827-834
|
[50] |
Sharp, J.A., Franco, A.A., Osley, M.A. et al. Genes Dev., 16 (2002),pp. 85-100
|
[51] |
Sharp, J.A., Krawitz, D.C., Gardner, K.A. et al. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin Genes Dev., 17 (2003),pp. 2356-2361
|
[52] |
Shi, J., Dawe, R.K. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27 Genetics 1, 73 (2006),pp. 1571-1583
|
[53] |
Stoler, S., Keith, K.C., Curnick, K.E. et al. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis Genes Dev., 5 (1995),pp. 573-586
|
[54] |
Sullivan, B.A., Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin Nat. Struct. Mol. Biol., 11 (2004),pp. 1076-1083
|
[55] |
Talbert, P.B., Bryson, T.D., Henikoff, S. Adaptive evolution of centromere proteins in plants and animals J. Biol., 3 (2004),p. e18
|
[56] |
Talbert, P.B., Masuelli, R., Tyagi, A.P. et al. Plant Cell, 14 (2002),pp. 1053-1066
|
[57] |
Takahashi, K., Takayama, Y., Masuda, F. et al. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle Philos. Trans. R. Soc. Lond., B, Biol. Sci., 360 (2005),pp. 595-606
|
[58] |
Williams, B., Leung, G., Maiato, H. et al. J. Cell Sci., 120 (2007),pp. 3522-3533
|
[59] |
Williams, J.S., Hayashi, T., Yanagida, M. et al. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin Mol. Cell, 33 (2009),pp. 287-298
|
[60] |
Wong, N.C., Wong, L.H., Quach, J.M. et al. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation PLoS Genet., 2 (2006),p. e17
|
[61] |
Wu, J., Yamagata, H., Hayashi-Tsugane, M. et al. Composition and structure of the centromeric region of rice chromosome 8 Plant Cell, 169 (2004),pp. 67-76
|
[62] |
Xia, X., Selvaraj, G., Bertrand, H. Plant Mol. Biol., 21 (1993),pp. 213-224
|
[63] |
Yan, H., Ito, H., Nobuta, K. et al. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere Plant Cell, 18 (2006),pp. 2123-2133
|
[64] |
Zhang, W., Lee, H.R., Koo, D.H. et al. Plant Cell, 20 (2008),pp. 25-34
|
[65] |
Zhang, W., Mellone, B.G., Karpen, G.H. A specialized nucleosome has a “point” to make Cell, 129 (2007),pp. 1047-1049
|
[66] |
Zhang, Y., Huang, Y., Zhang, L. et al. Structural features of the rice chromosome 4 centromere Nucleic Acids Res., 32 (2004),pp. 2023-2030
|
[67] |
Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
|
[68] |
Zwick, M.S., Islam-Faridi, M.N., Zhang, H.B. et al. Am. J. Bot., 87 (2000),pp. 1757-1764
|