5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 9
Sep.  2009
Turn off MathJax
Article Contents

Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement

doi: 10.1016/S1673-8527(08)60143-5
More Information
  • Corresponding author: E-mail address: baoliu@nenu.edu.cn (Bao Liu); E-mail address: fphan@genetics.ac.cn (Fangpu Han)
  • Received Date: 2009-03-02
  • Accepted Date: 2009-07-20
  • Rev Recd Date: 2009-07-15
  • Available Online: 2009-09-25
  • Publish Date: 2009-09-20
  • A polyploid organism by possessing more than two sets of chromosomes from one species (autopolyploidy) or two or more species (allopolyploidy) is known to have evolutionary advantages. However, by what means a polyploid accommodates increased genetic dosage or divergent genomes (allopolyploidy) in one cell nucleus and cytoplasm constitutes an enormous challenge. Recent years have witnessed efforts and progress in exploring the possible mechanisms by which these seemingly intangible hurdles of polyploidy may be ameliorated or eventually overcome. In particular, the documentation of rapid and extensive non-Mendelian genetic and epigenetic changes that often accompany nascent polyploidy is revealing: the resulting non-additive and novel gene expression at global, regional and local levels, and timely restoration of meiotic chromosomal behavior towards bivalent pairing and disomic inheritance may ensure rapid establishment and stabilization as well as its long-term evolutionary success. Further elucidation on these novel mechanisms underpinning polyploidy will promote our understanding on fundamental issues in evolutionary biology and in our manipulation capacities in future genetic improvement of important crops that are currently polyploids in genomic constitution. This review is intended to provide an updated discussion on these interesting and important issues within the scope of a specific yet one of the most important plant groups—polyploid wheat and its related species.
  • loading
  • [1]
    Adams, K.L., Wendel, J.F. Novel patterns of gene expression in polyploid plants Trend Genet., 21 (2005),pp. 539-543
    [2]
    Adams, K.L., Wendel, J.F. Polyploidy and genome evolution in plants Cur. Opin. Plant Biol., 8 (2005),pp. 135-141
    [3]
    Adams, K.L., Cronn, R., Percifield, R. et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 4649-4654
    [4]
    Axelsson, T., Bowman, C.M., Sharpe, A.G. et al. Amphidiploid Brassica juncea contains conserved progenitor genomes Genome, 43 (2000),pp. 679-688
    [5]
    Baumel, A., Ainouche, M., Kalendar, R. et al. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae) Mol. Biol. Evol., 19 (2002),pp. 1218-1227
    [6]
    Bento, M., Pereira, H.S., Rocheta, M. et al. Polyploidization as a retraction force in plant genome evolution: Sequence rearrangements in triticale PLoS ONE, 3 (2008),p. e1402
    [7]
    Bossdorf, O., Richards, C.L., Pigliucci, M. Epigenetics for ecologists Ecol. Lett., 11 (2008),pp. 106-115
    [8]
    Bottley, A., Koebner, R.M.D. Variation for homoeologous gene silencing in hexaploid wheat Plant J., 56 (2008),pp. 297-302
    [9]
    Bottley, A., Xia, G.M., Koebner, R.M.D. Homoeologous gene silencing in hexaploid wheat Plant J., 47 (2006),pp. 897-906
    [10]
    Boyko, A., Kovalchuk, I. Epigenetic control of plant stress response Environ. Mol. Mutagen., 49 (2008),pp. 61-72
    [11]
    Chen, Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids Annu. Rev. Plant Biol., 58 (2007),pp. 377-406
    [12]
    Chen, Z.J., Ni, Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids BioEssays, 28 (2006),pp. 240-252
    [13]
    Chen, Z.J., Ha, M., Soltis, D. Polyploidy: Genome obesity and its consequences New Phytol., 174 (2007),pp. 717-720
    [14]
    Comai, L. Genetic and epigenetic interactions in allopolyploid plants Plant Mol. Biol., 43 (2000),pp. 387-399
    [15]
    Comai, L. The advantages and disadvantages of being polyploid Nat. Rev. Genet., 6 (2005),pp. 836-846
    [16]
    Comai, L., Tyagi, A.P., Winter, K. et al. Plant Cell, 12 (2000),pp. 1551-1567
    [17]
    Dong, Y.Z., Liu, Z.L., Shan, X.H. et al. Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements Russ. J. Genet., 41 (2005),pp. 890-896
    [18]
    Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication Science, 316 (2007),pp. 1862-1866
    [19]
    Eilam, T., Anikster, Y., Millet, E. et al. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum Genome, 51 (2008),pp. 616-627
    [20]
    Eilam, T., Anikster, Y., Millet, E. et al. Genome size and genome evolution in diploid Triticeae species Genome, 50 (2007),pp. 1029-1037
    [21]
    Feldman, M., Levy, A.A. Allopolyploidy—A shaping force in the evolution of wheat genomes Cytogenet. Genome Res., 109 (2005),pp. 250-258
    [22]
    Feldman, M., Lupton, F.G.H., Miller, T.E.
    [23]
    Feldman, M., Liu, B., Segal, G. et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes Genetics, 147 (1997),pp. 1381-1387
    [24]
    Finnegan, E.J. Epialleles—A source of random variation in times of stress Curr. Opin. Plant Biol., 5 (2002),pp. 101-106
    [25]
    Gaeta, R.T., Pires, J.C., Iniguez-Luy, F. et al. Plant Cell, 19 (2007),pp. 3403-3417
    [26]
    Geiman, T.M., Robertson, K.D. Chromatin remodeling, histone modifications, and DNA methylation—How does it all fit together? J. Cell Biochem., 87 (2002),pp. 117-125
    [27]
    Gustafson, J.P., Bennett, M.D. Crop Sci., 16 (1976),pp. 688-693
    [28]
    Han, F., Liu, B., Fedak, G. et al. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis Theor. Appl. Genet., 109 (2004),pp. 1070-1076
    [29]
    Han, F., Fedak, G., Guo, W. et al. Rapid and repeatable elimination of a parental genome-specific repeat (pGc1R-1a) in newly synthesized wheat allopolyploids Genetics, 170 (2005),pp. 1239-1245
    [30]
    Han, F.P., Fedak, G., Ouellet, T. et al. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae Genome, 46 (2003),pp. 716-723
    [31]
    He, P., Friebe, B.R., Gill, B.S. et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat Plant Mol. Biol., 52 (2003),pp. 401-414
    [32]
    Hegarty, M., Hiscock, S. Polyploidy: Doubling up for evolutionary success Curr. Biol., 17 (2007),pp. R927-R929
    [33]
    Hegarty, M.J., Hiscock, S.J. Genomic clues to the evolutionary success of polyploid plants Curr. Biol., 18 (2008),pp. R435-R444
    [34]
    Kashkush, K., Feldman, M., Levy, A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid Genetics, 160 (2002),pp. 1651-1659
    [35]
    Lee, H.S., Chen, Z.J. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 6753-6758
    [36]
    Levy, A.A., Feldman, M. The impact of polyploidy on grass genome evolution Plant Physiol., 130 (2002),pp. 1587-1593
    [37]
    Levy, A.A., Feldman, M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization Biol. J. Lin. Soc., 82 (2004),pp. 607-613
    [38]
    Liu, B., Wendel, J.F. Non-mendelian phenomena in allopolyploid genome evolution Curr. Genomics, 3 (2002),pp. 489-505
    [39]
    Liu, B., Wendel, J.F. Epigenetic phenomena and the evolution of plant allopolyploids Mol. Phylogenet. Evol., 29 (2003),pp. 365-379
    [40]
    Liu, B., Segal, G., Vega, J.M. et al. Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat Plant J., 11 (1997),pp. 959-965
    [41]
    Liu, B., Brubaker, C.L., Mergeai, G. et al. Polyploid formation in cotton is not accompanied by rapid genomic changes Genome, 44 (2001),pp. 321-330
    [42]
    Liu, B., Vega, J.M., Segal, G. et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences Genome, 41 (1998),pp. 272-277
    [43]
    Liu, B., Vega, J.M., Feldman, M. Genome, 41 (1998),pp. 535-542
    [44]
    Liu, Z., Adams, K.L. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development Curr. Biol., 17 (2007),pp. 1669-1674
    [45]
    Ma, X.F., Gustafson, J.P. Genome evolution of allopolyploids: A process of cytological and genetic diploidization Cytogenet. Genome Res., 109 (2005),pp. 236-249
    [46]
    Ma, X.F., Gustafson, J.P. Timing and rate of genome variation in triticale following allopolyploidization Genome, 49 (2006),pp. 950-958
    [47]
    Ma, X.F., Gustafson, J.P. Allopolyploidization-accommodated genomic sequence changes in triticale Ann. Bot., 101 (2008),pp. 825-832
    [48]
    Madlung, A., Masuelli, R.W., Watson, B. et al. Plant Physiol., 129 (2002),pp. 733-746
    [49]
    Madlung, A., Tyagi, A.P., Watson, B. et al. Plant J., 41 (2005),pp. 221-230
    [50]
    Michael, O.P., Bai, J., Laudencia-Chingcuanco, D. et al. Non-additive expression of homoeologous genes is established upon polyploidization in hhexaploid wheat Genetics, 181 (2009),pp. 1147-1157
    [51]
    Mochida, K., Yamazaki, Y., Ogihara, Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags Mol. Genet. Genomics, 270 (2003),pp. 371-377
    [52]
    Otto, S.P. The evolutionary consequences of polyploidy Cell, 131 (2007),pp. 452-462
    [53]
    Otto, S.P., Whitton, J. Polyploid incidence and evolution An. Rev. Genet., 34 (2000),pp. 401-437
    [54]
    Ozkan, H., Levy, A.A., Feldman, M. Plant Cell, 13 (2001),pp. 1735-1747
    [55]
    Paun, O., Fay, M.F., Soltis, D.E. et al. Genetic and epigenetic alterations after hybridization and genome doubling Taxon, 56 (2007),pp. 649-656
    [56]
    Pikaard, C.S. Genomic change and gene silencing in polyploids Trend. Genet., 17 (2001),pp. 675-677
    [57]
    Pikaard, C.S., Lawrence, R.J. Uniting the paths to gene silencing Nat. Genet., 32 (2002),pp. 340-341
    [58]
    Pontes, O., Lawrence, R.J., Neves, N. et al. Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11418-11423
    [59]
    Rapp, R.A., Alvarez, I., Wendel, J.F. Molecular confirmation of the position of Gossypium trifurcatum vollesen Genet. Resou. Crop Evol., 52 (2005),pp. 749-753
    [60]
    Richards, E.J. Population epigenetics Curr. Opin. Genet. Develop., 18 (2008),pp. 221-226
    [61]
    Richards, E.J., Elgin, S.C.R. Epigenetic codes for heterochromatin formation and silencing: Rounding up the usual suspects Cell, 108 (2002),pp. 489-500
    [62]
    Rieseberg, L.H. Polyploid evolution: Keeping the peace at genomic reunions Curr. Biol., 11 (2001),pp. R925-R928
    [63]
    Salmon, A., Ainouche, M.L., Wendel, J.F. Mol. Ecol., 14 (2005),pp. 1163-1175
    [64]
    Schranz, M.E., Osborn, T.C. Am. J. Bot., 91 (2004),pp. 174-183
    [65]
    Shaked, H., Kashkush, K., Ozkan, H. et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat Plant Cell, 13 (2001),pp. 1749-1759
    [66]
    Skalicka, K., Lim, K.Y., Matyasek, R. et al. Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco New Phytol., 166 (2005),pp. 291-303
    [67]
    Song, K., Lu, P., Tang, K. et al. Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 7719-7723
    [68]
    Stebbins, G.L.
    [69]
    Vaughn, M.W., Tanurdži, M., Lippman, Z. et al. PLoS Biol., 5 (2007),pp. 1617-1629
    [70]
    Wang, J., Tian, L., Lee, H.S. et al. Genetics, 173 (2006),pp. 965-974
    [71]
    Wang, J., Tian, L., Madlung, A. et al. Genetics, 167 (2004),pp. 1961-1973
    [72]
    Wendel, J.F. Genome evolution in polyploids Plant Mol. Biol., 42 (2000),pp. 225-249
    [73]
    Zhai, J., Liu, J., Liu, B. et al. PLoS Genet., 4 (2008),p. e1000056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (96) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return