5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 8
Aug.  2009
Turn off MathJax
Article Contents

Effects of splice sites on the intron retention in histamine H3 receptors from rats and mice

doi: 10.1016/S1673-8527(08)60137-X
More Information
  • Corresponding author: E-mail address: zyduan@genetics.ac.cn (Ziyuan Duan); E-mail address: jwdai@genetics.ac.cn (Jianwu Dai)
  • Received Date: 2009-02-18
  • Accepted Date: 2009-05-11
  • Rev Recd Date: 2009-04-21
  • Available Online: 2009-08-14
  • Publish Date: 2009-08-20
  • In the alternative splicing, intron retention, of histamine H3 receptors in rats and mice, the short transcript isoforms that are excised alternatively spliced introns are easily detected in a very low level in rats and are undetectable in mice using the regular PCR protocol. Theretained introns have common 5′ splice site and different 3′ splice sites. The detailed mechanism for the special alternative splicing remains largely unclear. In this study, we developed a minigene splicing system to recapitulate natural alternative splicing of the receptorsand investigated the effects of 5′ and 3′ splice sites on intron retention in HeLa cells. Mutating weak 5′ and 3′ splice sites of the alternatively spliced introns toward the canonical consensus sequences promoted the splicing of the corresponding introns in rat and mouseminigenes. The effect of splice site strength was context-dependent and much more significant for the 3′ splice site of the longer alternative intron than for the 3′ splice site of the shorter alternative intron and the common 5′ splice sites; it was also more significant in the ratminigene than in the mouse minigene. Mutating the 3′ splice site of the longer alternative intron resulted in almost complete splicing ofthe intron and made the corresponding isoform to become the nearly exclusive transcript in the rat minigene.
  • loading
  • [1]
    Abril, J.F., Castelo, R., Guigo, R. Comparison of splice sites in mammals and chicken Genome Res., 15 (2005),pp. 111-119
    [2]
    Akerman, M., Mandel-Gutfreund, Y. Does distance matter? Variations in alternative 3 (splicing regulation Nucleic Acids Res., 35 (2007),pp. 5487-5498
    [3]
    Arrang, J.M., Garbarg, M., Schwartz, J.C. Nature, 302 (1983),pp. 832-837
    [4]
    Ast, G. How did alternative splicing evolve? Nat. Rev. Genet., 5 (2004),pp. 773-782
    [5]
    Barrett, P., Ross, A.W., Balik, A. et al. Endocrinology, 146 (2005),pp. 1930-1939
    [6]
    Blencowe, B.J. Alternative splicing: New insights from global analyses Cell, 126 (2006),pp. 37-47
    [7]
    Bongers, G., Bakker, R.A., Leurs, R. Biochem. Pharmacol., 73 (2007),pp. 1195-1204
    [8]
    Chang, Y.F., Imam, J.S., Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway Annu. Rev. Biochem., 76 (2007),pp. 51-74
    [9]
    Chen, J., Liu, C., Lovenberg, T.W. Eur. J. Pharmacol., 467 (2003),pp. 57-65
    [10]
    Clark, T.A., Schweitzer, A.C., Chen, T.X. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays Genome Biol., 8 (2007),p. R64
    [11]
    Coge, F., Guenin, S.P., Audinot, V. et al. Biochem. J., 355 (2001),pp. 279-288
    [12]
    Cooper, T.A. Use of minigene systems to dissect alternative splicing elements Methods, 37 (2005),pp. 331-340
    [13]
    Ding, W., Zou, H., Dai, J. et al. BioTechniques, 39 (2005),pp. 841-845
    [14]
    Drutel, G., Peitsaro, N., Karlstedt, K. et al. Mol. Pharmacol., 59 (2001),pp. 1-8
    [15]
    Heckman, K.L., Pease, L.R. Gene splicing and mutagenesis by PCR-driven overlap extension Nat. Protoc., 2 (2007),pp. 924-932
    [16]
    Johnson, J.M., Castle, J., Garrett-Engele, P. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays Science, 302 (2003),pp. 2141-2144
    [17]
    Kim, E., Goren, A., Ast, G. Alternative splicing: Current perspectives Bioessays, 30 (2008),pp. 38-47
    [18]
    Leurs, R., Bakker, R.A., Timmerman, H. et al. Nat. Rev. Drug Discov., 4 (2005),pp. 107-120
    [19]
    Lim, L.P., Burge, C.B. A computational analysis of sequence features involved in recognition of short introns Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 11193-11198
    [20]
    Lovenberg, T.W., Roland, B.L., Wilson, S.J. et al. Mol. Pharmacol., 55 (1999),pp. 1101-1107
    [21]
    Maquat, L.E. Nonsense-mediated mRNA decay: Splicing, translation, and mRNP dynamics Nat. Rev. Mol. Cell Biol., 5 (2004),pp. 89-99
    [22]
    Matlin, A.J., Clark, F., Smith, C.W. Understanding alternative splicing: Towards a cellular code Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 386-398
    [23]
    Morisset, S., Sasse, A., Gbahou, F. et al. Biochem. Biophys. Res. Commun., 280 (2001),pp. 75-80
    [24]
    Pogulis, R.J., Vallejo, A.N., Pease, L.R. Methods Mol. Biol., 57 (1996),pp. 167-176
    [25]
    Romano, M., Marcucci, R., Baralle, F.E. Splicing of constitutive upstream introns is essential for the recognition of intraexonic suboptimal splice sites in the thrombopoietin gene Nucleic Acids Res., 29 (2001),pp. 886-894
    [26]
    Roux, K.H. Single-step PCR optimization using touchdown and stepdown PCR programming Methods Mol. Biol., 192 (2002),pp. 31-36
    [27]
    Srebrow, A., Kornblihtt, A.R. The connection between splicing and cancer J. Cell Sci., 119 (2006),pp. 2635-2641
    [28]
    Tardivel-Lacombe, J., Rouleau, A., Heron, A. et al. Neuroreport, 11 (2000),pp. 755-759
    [29]
    Tardivel-Lacombe, J., Morisset, S., Gbahou, F. et al. Neuroreport, 12 (2001),pp. 321-324
    [30]
    Wang, G.-S., Cooper, T.A. Splicing in disease: Disruption of the splicing code and the decoding machinery Nat. Rev. Genet., 8 (2007),pp. 749-761
    [31]
    Wellendorph, P., Goodman, M.W., Burstein, E.S. et al. Neuropharmacology, 42 (2002),pp. 929-940
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (97) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return