5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 8
Aug.  2009
Turn off MathJax
Article Contents

Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties

doi: 10.1016/S1673-8527(08)60135-6
More Information
  • Corresponding author: E-mail address: zsli@genetics.ac.cn (Zhensheng Li); E-mail address: yptong@genetics.ac.cn (Yiping Tong)
  • Received Date: 2009-06-18
  • Accepted Date: 2009-07-08
  • Rev Recd Date: 2009-07-07
  • Available Online: 2009-08-14
  • Publish Date: 2009-08-20
  • TaPHT1.2 is a functional, root predominantly expressed and low phosphate (Pi) inducible high-affinity Pi transporter in wheat, whichis more abundant in the roots of P-efficient wheat genotypes (e.g., Xiaoyan 54) than in P-inefficient genotypes (e.g., Jing 411) under bothPi-deficient and Pi-sufficient conditions. To characterize TaPHT1.2 further, we genetically mapped a TaPHT1.2 transporter, TaPHT1.2-D1, on the long arm of chromosome 4D using a recombinant inbred line population derived from Xiaoyan 54 and Jing 411, and isolated a1,302 bp fragment of the TaPHT1.2-D1 promoter (PrTaPHT1.2-D1) from Xiaoyan 54. TaPHT1.2-D1 shows collinearity with OsPHT1.2 that has previously been reported to mediatethe translocation of Pi from roots to shoots.PrTaPHT1.2-D contains a number of Pi-starvation responsive elements, including P1BS, WRKY-binding W-box, and helix-loop-helix-binding elements. PrTaPHT1.2-D1 wasthen used to drive expression of β-glucuronidase (GUS) reporter gene in Arabidopsis through Agrobacterium-mediated transformation. Histochemical analysis of transgenic Arabidopsis plants showed that the reporter gene was specifically induced by Pi-starvation and predominantly expressed in the roots. As there is only one SNP between the TaPHT1.2-D1 promoters of Xiaoyan 54 and Jing 411, and thisSNP does not exist within the Pi-starvation responsive elements, the differential expression of TaPHT1.2 in Xiaoyan 54 and Jing 411 maynot be caused by this SNP.
  • loading
  • [1]
    Ai, P., Sun, S., Zhao, J. et al. Plant J., 57 (2009),pp. 798-809
    [2]
    Benbouza, H., Jacquemin, J.M., Baudoin, J.P. et al. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels Biotech. Agron. Soc. Environ., 10 (2006),pp. 77-81
    [3]
    Burleigh, S.H., Harrison, M.J. Plant Mol. Biol., 34 (1997),pp. 199-208
    [4]
    Clough, S.J., Steven, J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [5]
    Davies, T.G.E., Ying, J., Xu, Q. et al. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats Plant Cell Environ., 25 (2002),pp. 1325-1340
    [6]
    Devaiah, B.N., Karthikeyan, A.S., Raghothama, K.G. Plant Physiol., 143 (2007),pp. 1789-1801
    [7]
    Elmayan, T., Tepfer, M. Transgenic Res., 4 (1995),pp. 388-396
    [8]
    Franco-Zorrilla, J.M., Martin, A.C., Leyva, A. et al. Plant Physiol., 138 (2005),pp. 847-857
    [9]
    Franco-Zorrilla, J.M., Valli, A., Todesco, M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity Nat. Genet., 39 (2007),pp. 1033-1037
    [10]
    Gordon-Weeks, R., Tong, Y.P., Davies, T.G. et al. Restricted spatial expression of a high-affinity phosphate transporter in potato roots J. Cell Sci., 116 (2003),pp. 3135-3144
    [11]
    Hammond, J.P., Bennett, M.J., Bowen, H.C. et al. Plant Physiol., 132 (2003),pp. 578-596
    [12]
    Hammond, J.P., Broadley, M.R., White, P.J. Genetic responses to phosphorus deficiency Ann. Bot., 94 (2004),pp. 323-332
    [13]
    Hammond, J.P., White, P.J. Sucrose transport in the phloem: Integrating root responses to phosphorus starvation J. Exp. Bot., 59 (2008),pp. 93-109
    [14]
    Hou, X.L., Wu, P., Jiao, F.C. et al. Plant Cell Environ., 28 (2005),pp. 353-364
    [15]
    Karthikeyan, A.S., Varadarajan, D.K., Jain, A. et al. Planta, 225 (2007),pp. 907-918
    [16]
    Koyama, T., Ono, T., Shimizu, M. et al. J. Biosci. Bioeng., 99 (2005),pp. 38-42
    [17]
    Lander, E.S., Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps Genetics, 121 (1989),pp. 185-199
    [18]
    Li, Y.L., Tong, Y.P., Li, B. et al. Acta Bot. Boreal.-Occident. Sin., 28 (2008),pp. 1303-1307
    [19]
    Liu, C., Muchhal, U.S., Uthappa, M. et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus Plant Physiol., 116 (1998),pp. 91-99
    [20]
    Martín, A.C., del Pozo, J.C., Iglesias, J. et al. Plant J, 24 (2000),pp. 559-567
    [21]
    Miftahudin, Ross, K., Ma, X.F., Mahmoud, A.A. et al. Analysis of expressed sequence tag loci on wheat chromosome group 4 Genetics, 168 (2004),pp. 651-663
    [22]
    Mudge, S.R., Rae, A.L., Diatloff, E. et al. Plant J., 31 (2002),pp. 341-353
    [23]
    Nagy, R., Vasconcelos, M.J., Zhao, S. et al. Plant Biology (Stuttgart, Germany), 8 (2006),pp. 186-197
    [24]
    Okamura, H., Hanaoka, S., Nagadoi, A. et al. J. Mol. Biol., 295 (2000),pp. 1225-1236
    [25]
    Paszkowski, U., Kroken, S., Roux, C. et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 13324-13329
    [26]
    Rae, A.L., Cybinski, D.H., Jarmey, J.M. et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties amongst members of the Pht1 family Plant Mol. Biol., 53 (2003),pp. 27-36
    [27]
    Raghothama, K.G., Karthikeyan, A.S. Phosphate acquisition Plant Soil, 274 (2005),pp. 37-49
    [28]
    Raghothama, K.G. Phosphate acquisition Annu. Rev. Plant Physiol. Plant Mol. Biol., 50 (1999),pp. 665-693
    [29]
    Rubio, V., Linhares, F., Solano, R. et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae Genes Dev., 15 (2001),pp. 2122-2133
    [30]
    Schachtman, D.P., Reid, R.J., Ayling, S.M. Phosphorus uptake by plants: From soil to cell Plant Physiol., 116 (1998),pp. 447-453
    [31]
    Schünmann, P.H., Richardson, A.E., Smith, F.W. et al. J. Exp. Bot., 55 (2004),pp. 855-865
    [32]
    Schünmann, P.H., Richardson, A.E., Vickers, C.E. et al. Plant Physiol., 136 (2004),pp. 4205-4214
    [33]
    Shin, H., Shin, H.S., Dewbre, G.R. et al. Plant J., 39 (2004),pp. 629-642
    [34]
    Slabaugh, M., Huestis, G., Leonard, J. et al. Sequence based genetic markers for genes and gene families: Single strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea Theor. Appl. Genet., 94 (1997),pp. 400-408
    [35]
    Smith, F.W., Cybinski, D., Rae, A.E.
    [36]
    Smith, F.W., Jackson, W.A. Plant Physiol., 84 (1987),pp. 1314-1318
    [37]
    Smith, F.W., Jackson, W.A. Plant Physiol., 84 (1987),pp. 1319-1324
    [38]
    Smith, F.W., Mudge, S.R., Rae, A.L. et al. Phosphate transport in plants Plant Soil, 248 (2003),pp. 71-83
    [39]
    Stomp, A.M.
    [40]
    Tittarelli, A., Milla, L., Vargas, F. et al. J. Exp. Bot., 58 (2007),pp. 2573-2582
    [41]
    Vance, C.P., Uhde-Stone, C., Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource New Phytologist, 157 (2003),pp. 423-447
    [42]
    Varscht, J., Tomos, D., Komor, E. Planta, 224 (2006),pp. 1303-1314
    [43]
    Wang, Y.H., Garvin, D.F., Kochian, L.V. Nitrate-induced genes in tomato roots: Array analysis reveals novel genes that may play a role in nitrogen nutrition Plant Physiol., 127 (2001),pp. 345-359
    [44]
    Zeng, Y.J., Ying, J., Liu, J.Z. et al. Function analysis of a wheat phosphate transporter in yeast mutant Acta Genetica Sinica, 29 (2002),pp. 1017-1020
    [45]
    Zhou, J., Jiao, F.C., Wu, Z.C. et al. Plant Physiol., 146 (2008),pp. 1673-1686
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return