5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 6
Jun.  2009
Turn off MathJax
Article Contents

Temporal changes in SSR allelic diversity of major rice cultivars in China

doi: 10.1016/S1673-8527(08)60125-3
More Information
  • Corresponding author: E-mail address: xwei@mail.hz.zj.cn (Xinghua Wei)
  • Received Date: 2008-08-13
  • Accepted Date: 2009-03-18
  • Rev Recd Date: 2009-03-16
  • Available Online: 2009-06-16
  • Publish Date: 2009-06-20
  • Forty simple sequence repeats (SSRs) were used to assess the changes of diversity in 310 major Chinese rice cultivars grown during the 1950s–1990s. Of the 40 SSR loci, 39 were polymorphic. A total of 221 alleles were detected with an average of 5.7 alleles per locus (Na). The Nei's genetic diversity index (He) varied drastically among the loci (0.207 to 0.874, mean 0.625). Comparing the temporal changes in Na and He, the cultivars from the 1950s had more alleles and higher He scores than the cultivars from the other four decades. Analysis of molecular variance (AMOVA) indicated that the genetic differentiation among the five decades was not significant in the whole set, but significant within indica and japonica. More changes among the decades were revealed inindica cultivars than in japonica cultivars. Some alleles had been lost in current rice cultivars in the 1990s, occurring more frequently in indica. These results suggest that more elite alien genetic resources should be explored to widen the genetic backgrounds of rice cultivars currently grown in China.
  • loading
  • [1]
    Backes, G., Hatz, B., Jahoor, A. et al. RFLP diversity within and between major groups of barley in Europe Plant Breed., 122 (2003),pp. 291-299
    [2]
    Cai, H.F., Zhu, M.F.
    [3]
    Clerc, V.L., Bazante, F., Baril, C. et al. Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers Theor. Appl. Genet., 110 (2005),pp. 294-302
    [4]
    Donini, P., Law, J.R., Koebner, R.M.D. et al. Temporal trends in the diversity of UK wheat Theor. Appl. Genet., 100 (2000),pp. 912-917
    [5]
    Excoffier, L., Smouse, P., Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data Genetics, 131 (1992),pp. 479-491
    [6]
    Excoffier, L., Laval, L.G., Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis Evol. Bioinformatics Online, 1 (2005),pp. 47-50
    [7]
    Frankel, O.H. Genetic dangers of the green revolution World Agric., 19 (1970),pp. 9-14
    [8]
    Fu, Y.B., Peterson, G.W., Scoles, G. et al. Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001 Crop Sci., 43 (2003),pp. 1989-1995
    [9]
    El Mousadik, A., Petit, R.J. Theor. Appl. Genet., 92 (1996),pp. 832-839
    [10]
    Garris, A.J., Tai, T.H., Coburn, J. et al. Genetics, 160 (2005),pp. 1631-1638
    [11]
    Goudet, J.
    [12]
    Harlan, J.R. Genetics of disaster J. Environ. Qual., 1 (1972),pp. 212-215
    [13]
    Hawkes, J.G.
    [14]
    Koebner, R.M., Donini, P., Reeves, J.C. et al. Temporal flux in themorphological and molecular diversity of UK barley Theor. Appl. Genet., 106 (2003),pp. 550-558
    [15]
    Lin, S.C., Ming, S.K.
    [16]
    Maccaferi, M., Sanguinetti, M.C., Donini, P. et al. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm Theor. Appl. Genet., 107 (2003),pp. 783-797
    [17]
    Malysheva-Otto, L., Ganal, M.W., Law, J.R. et al. Mol. Breed., 20 (2007),pp. 309-322
    [18]
    Manifesto, M.M., Schlatter, A.R., Hopp, H.E. et al. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers Crop Sci., 41 (2001),pp. 682-690
    [19]
    National Bureau of Statistics of China
    [20]
    Nei, M. Analysis of gene diversity in subdivided populations Proc. Natl. Acad. Sci. USA, 70 (1973),pp. 3321-3323
    [21]
    Panaud, O., Chen, X., McCouc, S.R. Mol. Gen. Genet., 252 (1996),pp. 597-607
    [22]
    Petit, R.J., Mousadik, A.E., Pons, O. Identifying populations for conservation on the basis of genetic markers Cons. Biol., 12 (1998),pp. 844-855
    [23]
    Qi, Y.W., Zhang, D.L., Zhang, H.L. et al. Chin. Sci. Bull., 51 (2006),pp. 681-688
    [24]
    Ramanatha, R.V., Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources Plant Cell Tiss. Organ Cult., 68 (2002),pp. 1-19
    [25]
    Roussel, V., Koenig, J., Beckert, M. et al. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes Theor. Appl. Genet., 108 (2004),pp. 920-930
    [26]
    Roussel, V., Leisova, L., Exbrayat, F. et al. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000 Theor. Appl. Genet., 111 (2005),pp. 162-170
    [27]
    Smale, M., Reynolds, M.P., Warburton, M. et al. Dimensions of diversity in modern spring bread wheat in developing countries Crop Sci., 42 (2002),pp. 1766-1779
    [28]
    Sokal, R.R., Rohlf, F.J.
    [29]
    Tang, S.X. (2004). Origin of rice and its domestication and expansion. In Proceedings of International Symposium: Rediscovering of Rice: History, Culture and Economy. Seoul, Korea, pp. 16–28.
    [30]
    Wei, X.H., Tang, S.X., Jiang, Y.Z. et al. Genetic diversity of allozyme associated with morphological traits in Chinese improved rice varieties Chin. J. Rice Sci., 17 (2003),pp. 123-128
    [31]
    Weir, B.S., Cockerham, C.C. Evolution, 38 (1984),pp. 1358-1370
    [32]
    Xiao, X.Y., Wang, Y.P., Zhang, J.K. et al. SSR marker-based genetic diversity fingerprinting of hybrid rice in Sichuan, China Chin. J. Rice Sci., 20 (2006),pp. 1-7
    [33]
    Yang, G.P., Maroof, M.A.S., Zhang, Q.F. et al. Genetic diversity of rice detected by a multiple copy microsatellite DNA marker Heriditas (Beijing), 20 (1998),pp. 27-30
    [34]
    Ying, C.S.
    [35]
    Zhang, D.L., Zhang, H.L., Wei, X.H. et al. Chin. Sci. Bull., 52 (2007),pp. 343-351
    [36]
    Zhang, H.L., Sun, J.L., Wang, M.X. et al. Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR Genome, 50 (2006),pp. 72-83
    [37]
    Zheng, K.L., Huang, N., Bennett, J., and Khush, G.S. (1995). Rapid DNA isolation for marker-assisted selection in rice breeding. IRRI Discussion Paper Series, pp. 12.
    [38]
    Zhu, M.Y., Wang, Y.Y., Zhu, Y.Y. et al. Genetic diversity of rice landraces from Yunnan revealed by SSR analysis and its significance for conservation J. Huazhong Agri. Univ., 23 (2004),pp. 187-191
    [39]
    Zhuang, J.Y., Qian, H.R., Lu, J. et al. Agri. Sci. China, 29 (1996),pp. 17-22
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return