5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 6
Jun.  2009
Turn off MathJax
Article Contents

Liver development in zebrafish (Danio rerio)

doi: 10.1016/S1673-8527(08)60121-6
More Information
  • Corresponding author: E-mail address: pengjr@zju.edu.cn (Jinrong Peng)
  • Received Date: 2009-02-16
  • Accepted Date: 2009-04-17
  • Rev Recd Date: 2009-04-17
  • Available Online: 2009-06-16
  • Publish Date: 2009-06-20
  • Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.
  • loading
  • [1]
    Allende, M.L., Amsterdam, A., Becker, T. et al. Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development Genes Dev., 10 (1996),pp. 3141-3155
    [2]
    Amali, A.A., Rekha, R.D., Lin, C.J. et al. Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis J. Biomed. Sci., 13 (2006),pp. 225-232
    [3]
    Biemar, F., Argenton, F., Schmidtke, R. et al. Pancreas development in zebrafish: Early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet Dev. Biol., 230 (2001),pp. 189-203
    [4]
    Blouin, A., Bolender, R.P., Weibel, E.R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study J. Cell Biol., 72 (1977),pp. 441-455
    [5]
    Bort, R., Signore, M., Tremblay, K. et al. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development Dev. Biol., 290 (2006),pp. 44-56
    [6]
    Braunbeck, T., Gorge, G., Storch, V. et al. Ecotoxicol. Environ. Saf., 19 (1990),pp. 355-374
    [7]
    Chen, J., Ng, S.M., Chang, C.Q. et al. Genes Dev., 23 (2009),pp. 278-290
    [8]
    Chen, J., Ruan, H., Ng, S.M. et al. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish Genes Dev., 19 (2005),pp. 2900-2911
    [9]
    Cheng, W., Guo, L., Zhang, Z.H. et al. HNF factors form a network to regulate liver-enriched genes in zebrafish Dev. Biol., 294 (2006),pp. 482-496
    [10]
    Chocron, S., Verhoeven, M.C., Rentzsch, F. et al. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points Dev. Biol., 305 (2007),pp. 577-588
    [11]
    Chung, W.S., Shin, C.H., Stainier, D.Y.R. Bmp2 signaling regulates the hepatic versus pancreatic fate decision Dev. Cell, 15 (2008),pp. 738-748
    [12]
    Chung, W.S., Stainier, D.Y.R. Intra-endodermal interactions are required for pancreatic beta cell induction Dev. Cell, 14 (2008),pp. 582-593
    [13]
    Concordet, J.P., Ingham, P. Developmental biology—catch of the decade Nature, 369 (1994),pp. 19-20
    [14]
    Detrich, H.W., Kieran, M.W., Chan, F.Y. et al. Intraembryonic hematopoietic cell migration during vertebrate development Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 10713-10717
    [15]
    Deutsch, G., Jung, J.N., Zheng, M.H. et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm Development, 128 (2001),pp. 871-881
    [16]
    Dienstag, J.L. Hepatitis B virus infection N Engl. J. Med., 359 (2008),pp. 1486-1500
    [17]
    Dong, P.D.S., Munson, C.A., Norton, W. et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation Nat. Genet., 39 (2007),pp. 397-402
    [18]
    Douarin, N.M. An experimental analysis of liver development Med. Biol., 53 (1975),pp. 427-455
    [19]
    Driever, W., SolnicaKrezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
    [20]
    Duncan, S.A. Mechanisms controlling early development of the liver Mech. Dev., 120 (2003),pp. 19-33
    [21]
    Farooq, M., Sulochana, K.N., Pan, X.F. et al. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish Dev. Biol., 317 (2008),pp. 336-353
    [22]
    Field, H.A., Ober, E.A., Roeser, T. et al. Formation of the digestive system in zebrafish. I. Liver morphogenesis Dev. Biol., 253 (2003),pp. 279-290
    [23]
    Galarneau, L., Pare, J.F., Allard, D. et al. Mol. Cell. Biol., 16 (1996),pp. 3853-3865
    [24]
    Godinho, L., Mumm, J.S., Williams, P.R. et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina Development, 132 (2005),pp. 5069-5079
    [25]
    Grunwald, D.J., Eisen, J.S. Headwaters of the zebrafish—emergence of a new model vertebrate Nat. Rev. Genet., 3 (2002),pp. 717-724
    [26]
    Gualdi, R., Bossard, P., Zheng, M.H. et al. Genes Dev., 10 (1996),pp. 1670-1682
    [27]
    Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
    [28]
    Her, G.M., Chiang, C.C., Chen, W.Y. et al. FEBS Lett., 538 (2003),pp. 125-133
    [29]
    Holtzinger, A., Evans, T. Gata4 regulates the formation of multiple organs Development, 132 (2005),pp. 4005-4014
    [30]
    Horne-Badovinac, S., Lin, D., Waldron, S. et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis Curr. Biol., 11 (2001),pp. 1492-1502
    [31]
    Horne-Badovinac, S., Rebagliati, M., Stainier, D.Y.R. A cellular framework for gut-looping morphogenesis in zebrafish Science, 302 (2003),pp. 662-665
    [32]
    Huang, H., Ruan, H., Aw, M.Y. et al. Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis Development, 135 (2008),pp. 3209-3218
    [33]
    Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
    [34]
    Jung, J.N., Zheng, M.H., Goldfarb, M. et al. Initiation of mammalian liver development from endoderm by fibroblast growth factors Science, 284 (1999),pp. 1998-2003
    [35]
    Kahn, P. Zebrafish hit the big time Science, 264 (1994),pp. 904-905
    [36]
    Kawamoto, S., Matsumoto, Y., Mizuno, K. et al. Expression profiles of active genes in human and mouse livers Gene, 174 (1996),pp. 151-158
    [37]
    Korzh, S., Emelyanov, A., Korzh, V. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish Mech. Dev., 103 (2001),pp. 137-139
    [38]
    Lam, S.H., Wu, Y.L., Vega, V.B. et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression Nat. Biotechnol., 24 (2006),pp. 73-75
    [39]
    Lee, C.S., Friedman, J.R., Fulmer, J.T. et al. The initiation of liver development is dependent on Foxa transcription factors Nature, 435 (2005),pp. 944-947
    [40]
    Lee, Y., Grill, S., Sanchez, A. et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration Development, 132 (2005),pp. 5173-5183
    [41]
    Li, M., Xie, Y.H., Kong, Y.Y. et al. Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which finds and activates enhancer II of hepatitis B virus J. Biol. Chem., 273 (1998),pp. 29022-29031
    [42]
    Li, Z., Korzh, V., Gong, Z.Y. Localized rbp4 expression in the yolk syncytial layer plays a role in yolk cell extension and early liver development BMC Dev. Biol., 7 (2007),p. 117
    [43]
    Lin, W.W., Wang, H.W., Sum, C. et al. Biochem. J., 348 (2000),pp. 439-446
    [44]
    Lorent, K., Yeo, S.Y., Oda, T. et al. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy Development, 131 (2004),pp. 5753-5766
    [45]
    Matsumoto, K., Yoshitomi, H., Rossant, J. et al. Liver organogenesis promoted by endothelial cells prior to vascular function Science, 294 (2001),pp. 559-563
    [46]
    Matthews, R.P., Lorent, K., Manoral-Mobias, R. et al. TNF alpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase Development, 136 (2009),pp. 865-875
    [47]
    Matthews, R.P., Lorent, K., Russo, P. et al. Dev. Biol., 274 (2004),pp. 245-259
    [48]
    Mayer, A.N., Fishman, M.C. Development, 130 (2003),pp. 3917-3928
    [49]
    Mullins, M.C., Hammerschmidt, M., Haffter, P. et al. Large-scale mutagenesis in the zebrafish—in search of genes-controlling development in a vertebrate Curr. Biol., 4 (1994),pp. 189-202
    [50]
    Noel, E.S., Casal-Sueiro, A., Busch-Nentwich, E. et al. Organ-specific requirements for Hdac1 in liver and pancreas formation Dev. Biol., 322 (2008),pp. 237-250
    [51]
    Ober, E.A., Olofsson, B., Makinen, T. et al. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish EMBO Rep., 5 (2004),pp. 78-84
    [52]
    Ober, E.A., Verkade, H., Field, H.A. et al. Mesodermal Wnt2b signalling positively regulates liver specification Nature, 442 (2006),pp. 688-691
    [53]
    Pack, M., SolnicaKrezel, L., Malicki, J. et al. Mutations affecting development of zebrafish digestive organs Development, 123 (1996),pp. 321-328
    [54]
    Passeri, M.J., Cinaroglu, A., Gao, C. et al. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation Hepatology, 49 (2009),pp. 443-452
    [55]
    Pyati, U.J., Cooper, M.S., Davidson, A.J. et al. Sustained Bmp signaling is essential for cloaca development in zebrafish Development, 133 (2006),pp. 2275-2284
    [56]
    Pyati, U.J., Webb, A.E., Kimelman, D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development Development, 132 (2005),pp. 2333-2343
    [57]
    Rai, K., Chidester, S., Zavala, C.V. et al. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish Genes Dev., 21 (2007),pp. 261-266
    [58]
    Rai, K., Nadauld, L.D., Chidester, S. et al. Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development Mol. Cell. Biol., 26 (2006),pp. 7077-7085
    [59]
    Reimold, A.M., Etkin, A., Clauss, I. et al. An essential role in liver development for transcription factor XBP-1 Genes Dev., 14 (2000),pp. 152-157
    [60]
    Reiter, J.F., Alexander, J., Rodaway, A. et al. Gata5 is required for the development of the heart and endoderm in zebrafish Genes Dev., 13 (1999),pp. 2983-2995
    [61]
    Reiter, J.F., Kikuchi, Y., Stainier, D.Y.R. Multiple roles for Gata5 in zebrafish endoderm formation Development, 128 (2001),pp. 125-135
    [62]
    Rossi, J.M., Dunn, N.R., Hogan, B.L.M. et al. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm Genes Dev., 15 (2001),pp. 1998-2009
    [63]
    Sadler, K.C., Amsterdam, A., Soroka, C. et al. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease Development, 132 (2005),pp. 3561-3572
    [64]
    Sadler, K.C., Krahn, K.N., Gaur, N.A. et al. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1 Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 1570-1575
    [65]
    Shin, D., Shin, C.H., Tucker, J. et al. Bmp and Fgf signaling are essential for liver specification in zebrafish Development, 134 (2007),pp. 2041-2050
    [66]
    Solnicakrezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
    [67]
    Sosa-Pineda, B., Wigle, J.T., Oliver, G. Hepatocyte migration during liver development requires Prox1 Nat. Genet., 25 (2000),pp. 254-255
    [68]
    Stafford, D., Prince, V.E. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development Curr. Biol., 12 (2002),pp. 1215-1220
    [69]
    Stainier, D.Y.R. Zebrafish genetics and vertebrate heart formation Nat. Rev. Genet., 2 (2001),pp. 39-48
    [70]
    Streisinger, G., Walker, C., Dower, N. et al. Nature, 291 (1981),pp. 293-296
    [71]
    Sun, Z.X., Hopkins, N. Genes Dev., 15 (2001),pp. 3217-3229
    [72]
    Thisse, C., Zon, L.I. Organogenesis—heart and blood formation from the zebrafish point of view Science, 295 (2002),pp. 457-462
    [73]
    Tiso, N., Filippi, A., Pauls, S. et al. BMP signalling regulates anteroposterior endoderm patterning in zebrafish Mech. Dev., 118 (2002),pp. 29-37
    [74]
    Wallace, K.N., Pack, M. Unique and conserved aspects of gut development in zebrafish Dev. Biol., 255 (2003),pp. 12-29
    [75]
    Wallace, K.N., Yusuff, S., Sonntag, J.M. et al. Zebrafish hhex regulates liver development and digestive organ chirality Genesis, 30 (2001),pp. 141-143
    [76]
    Ward, A.B., Warga, R.M., Prince, V.E. Origin of the zebrafish endocrine and exocrine pancreas Dev. Dyn., 236 (2007),pp. 1558-1569
    [77]
    Zaret, K.S. Regulatory phases of early liver development: Paradigms of organogenesis Nat. Rev. Genet., 3 (2002),pp. 499-512
    [78]
    Zhao, R.O., Watt, A.J., Li, J.X. et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation Mol. Cell. Biol., 25 (2005),pp. 2622-2631
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return