[1] |
Bui, H.H., Sidney, J., Peters, B. et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications Immunogenetics, 57 (2005),pp. 304-314
|
[2] |
Carson, R.T., Vignali, K.M., Woodland, D.L. et al. T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage Immunity, 7 (1997),pp. 387-399
|
[3] |
Doytchinova, I.A., Flower, D.R. Towards the in silico identification of class II restricted T-cell epitopes: A partial least squares iterative self-consistent algorithm for affinity prediction Bioinformatics, 19 (2003),pp. 2263-2270
|
[4] |
Duda, R.O., Hart, P.E., Stork, D.G.
|
[5] |
Guan, P., Doytchinova, I.A., Zygouri, C. et al. MHCPred: A server for quantitative prediction of peptide-MHC binding Nucleic Acids Res., 31 (2003),pp. 3621-3624
|
[6] |
Henseler, M., Kaplan, A.M. A beginner's guide to partial least square analysis Understanding Statistics, 3 (2004),pp. 283-297
|
[7] |
Liao, L., Noble, W.S. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships J. Comput. Biol., 10 (2003),pp. 857-868
|
[8] |
Murugan, N., Dai, Y. Prediction of MHC class II binding peptides based on an iterative learning model Immunome Res., 1 (2005),p. 6
|
[9] |
Nielsen, M., Lundegaard, C., Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method BMC Bioinformatics, 8 (2007),p. 238
|
[10] |
Nielsen, M., Lundegaard, C., Worning, P. et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach Bioinformatics, 20 (2004),pp. 1388-1397
|
[11] |
Parham, P.
|
[12] |
Peters, B., Sette, A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method BMC Bioinformatics, 6 (2005),p. 132
|
[13] |
Peters, B., Bui, H.H., Frankild, S. et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules PLoS Comput. Biol., 2 (2006),p. e65
|
[14] |
Polikar, R. Ensemble based systems in decision making IEEE Circuits and Systems Magazine, 6 (2006),pp. 21-45
|
[15] |
Sturniolo, T., Bono, E., Ding, J. et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices Nat. Biotechnol., 17 (1999),pp. 555-561
|
[16] |
Swets, J.A. Measuring the accuracy of diagnostic systems Science, 240 (1988),pp. 1285-1293
|
[17] |
Tong, J.C., Zhang, G.L., Tan, T.W. et al. Prediction of HLA-DQ3.2beta ligands: Evidence of multiple registers in class II binding peptides Bioinformatics, 22 (2006),pp. 1232-1238
|
[18] |
Wang, P., Sidney, J., Dow, C. et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach PLoS Comput. Biol., 4 (2008),p. e1000048
|
[19] |
Yewdell, J.W., Bennink, J.R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses Annu. Rev. Immunol., 17 (1999),pp. 51-88
|
[20] |
Zhu, S., Udaka, K., Sidney, J. et al. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules Bioinformatics, 22 (2006),pp. 1648-1655
|