5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 5
May  2009
Turn off MathJax
Article Contents

Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system

doi: 10.1016/S1673-8527(08)60114-9
More Information
  • Corresponding author: E-mail address: ccchu@genetics.ac.cn (Chengcai Chu)
  • Received Date: 2008-12-10
  • Accepted Date: 2009-02-26
  • Rev Recd Date: 2009-02-23
  • Available Online: 2009-05-15
  • Publish Date: 2009-05-20
  • About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.
  • loading
  • [1]
    bdal-Aziz, S.A., Pliego-Alfaro, F., Quesada, M.A. et al. Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant J. Biosci. Bioeng., 101 (2006),pp. 508-510
    [2]
    Borevitz, J.O., Xia, Y., Blount, J. et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis Plant Cell, 12 (2000),pp. 2383-2394
    [3]
    Busov, V.B., Meilan, R., Pearce, D.W. et al. Plant Physiol., 132 (2003),pp. 1283-1291
    [4]
    Casadaban, M.J., Cohen, S.N. Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 4530-4533
    [5]
    Chen, S., Jin, W., Wang, M. et al. Distribution and characterization of over 1000 T-DNA tags in rice genome Plant J., 36 (2003),pp. 105-113
    [6]
    Chern, C.G., Fan, M.J., Yu, S.M. et al. A rice phenomics study–phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population Plant Mol. Biol., 65 (2007),pp. 427-438
    [7]
    Chin, H.G., Choe, M.S., Lee, S.H. et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system Plant J., 19 (1999),pp. 615-623
    [8]
    Claes, B., Smalle, J., Dekeyser, R. et al. Organ-dependent regulation of a plant promoter isolated from rice by ‘promoter-trapping’ in tobacco Plant J., 1 (1991),pp. 15-26
    [9]
    Cluster, P.D., O'Dell, M., Metzlaff, M. et al. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression Plant Mol. Biol., 32 (1996),pp. 1197-1203
    [10]
    de Buck, S., de Wilde, C., van Montagu, M. et al. Mol. Plant Microbe Interact., 13 (2000),pp. 658-665
    [11]
    Gheysen, G., Villarroel, R., van Montagu, M. Illegitimate recombination in plants: a model for T-DNA integration Genes Dev., 5 (1991),pp. 287-297
    [12]
    Goff, S.A., Ricke, D., Lan, T.H. et al. Science, 296 (2002),pp. 92-100
    [13]
    Hayashi, H., Czaja, I., Lubenow, H. et al. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro Science, 258 (1992),pp. 1350-1353
    [14]
    He, Y., Gan, S. Plant Mol. Biol., 47 (2001),pp. 595-605
    [15]
    Hsing, Y.I., Chern, C.G., Fan, M.J. et al. A rice gene activation/knockout mutant resource for high throughput functional genomics Plant Mol. Biol., 63 (2007),pp. 351-364
    [16]
    Ichikawa, T., Nakazawa, M., Kawashima, M. et al. Plant J., 36 (2003),pp. 421-429
    [17]
    IRGSP The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [18]
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J., 6 (1987),pp. 3901-3907
    [19]
    Jeon, J.S., Lee, S., Jung, K.H. et al. T-DNA insertional mutagenesis for functional genomics in rice Plant J., 22 (2000),pp. 561-570
    [20]
    Jeong, D.H., An, S., Kang, H.G. et al. T-DNA insertional mutagenesis for activation tagging in rice Plant Physiol., 130 (2002),pp. 1636-1644
    [21]
    Jeong, D.H., An, S., Park, S. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice Plant J., 45 (2006),pp. 123-132
    [22]
    Johnson, A.A., Hibberd, J.M., Gay, C. et al. Plant J., 41 (2005),pp. 779-789
    [23]
    Kardailsky, I., Shukla, V.K., Ahn, J.H. et al. Science, 286 (1999),pp. 1962-1965
    [24]
    Kim, S.R., Lee, J., Jun, S.H. et al. Transgene structures in T-DNA-inserted rice plants Plant Mol. Biol., 52 (2003),pp. 761-773
    [25]
    Kononov, M.E., Bassuner, B., Gelvin, S.B. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration Plant J., 11 (1997),pp. 945-957
    [26]
    Kumar, S., Fladung, M. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration Plant J., 31 (2002),pp. 543-551
    [27]
    Lindsey, K., Topping, J.F., Muskett, P.R. et al. Symp. Soc. Exp. Biol., 51 (1998),pp. 1-10
    [28]
    Lindsey, K., Wei, W., Clarke, M.C. et al. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants Transgenic Res., 2 (1993),pp. 33-47
    [29]
    Liu, X.Q., Bai, X.Q., Wang, X.J. et al. OsWRKY71, a rice transcription factor, is involved in rice defense response J. Plant Physiol., 164 (2007),pp. 969-979
    [30]
    Liu, Y.G., Whittier, R.F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking Genomics, 25 (1995),pp. 674-681
    [31]
    Mathews, H., Clendennen, S.K., Caldwell, C.G. et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport Plant Cell, 15 (2003),pp. 1689-1703
    [32]
    Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C. et al. T-DNA integration: a mode of illegitimate recombination in plants EMBO J., 10 (1991),pp. 697-704
    [33]
    Memelink, J. T-DNA activation tagging Methods Mol. Biol., 236 (2003),pp. 345-362
    [34]
    Nakazawa, M., Ichikawa, T., Ishikawa, A. et al. Activation tagging, a novel tool to dissect the functions of a gene family Plant J., 34 (2003),pp. 741-750
    [35]
    Odell, J.T., Nagy, F., Chua, N.H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter Nature, 313 (1985),pp. 810-812
    [36]
    Oki, M., Kamakaka, R.T. Blockers and barriers to transcription: competing activities? Curr. Opin. Cell Biol., 14 (2002),pp. 299-304
    [37]
    Ryu, C.H., You, J.H., Kang, H.G. et al. Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database Plant Mol. Biol., 54 (2004),pp. 489-502
    [38]
    Sallaud, C., Gay, C., Larmande, P. et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics Plant J., 39 (2004),pp. 450-464
    [39]
    Sallaud, C., Meynard, D., van Boxtel, J. et al. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics Theor. Appl. Genet., 106 (2003),pp. 1396-1408
    [40]
    Sambrook, J., Fritsch, E.F., Maniatis, T.
    [41]
    Thomas, C.M., Jones, J.D. Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events Mol. Genet. Genomics, 278 (2007),pp. 411-420
    [42]
    Topping, J.F., Agyeman, F., Henricot, B. et al. Plant J., 5 (1994),pp. 895-903
    [43]
    Topping, J.F., Lindsey, K. Plant Cell, 9 (1997),pp. 1713-1725
    [44]
    van der Graaff, E., Dulk-Ras, A.D., Hooykaas, P.J. et al. Development, 127 (2000),pp. 4971-4980
    [45]
    van der Graaff, E., Hooykaas, P.J., Keller, B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number Plant J., 32 (2002),pp. 819-830
    [46]
    Wan, S., Wu, J., Zhang, Z. et al. Activation tagging, an efficient tool for functional analysis of the rice genome Plant Mol. Biol., 69 (2009),pp. 69-80
    [47]
    Wei, W., Twell, D., Lindsey, K. Plant J., 11 (1997),pp. 1307-1314
    [48]
    Wenck, A., Czako, M., Kanevski, I. et al. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation Plant Mol. Biol., 34 (1997),pp. 913-922
    [49]
    Wu, C., Li, X., Yuan, W. et al. Development of enhancer trap lines for functional analysis of the rice genome Plant J., 35 (2003),pp. 418-427
    [50]
    Wu, Y.R., Wang, Q.Y., Ma, Y.M. et al. Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based substractive suppression hybridization method Plant Sci., 168 (2004),pp. 847-853
    [51]
    Yu, J., Hu, S., Wang, J. et al. Science, 296 (2002),pp. 79-92
    [52]
    Zhang, J., Guo, D., Chang, Y. et al. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library Plant J., 49 (2007),pp. 947-959
    [53]
    Zhang, J., Li, C., Wu, C. et al. RMD: a rice mutant database for functional analysis of the rice genome Nucleic Acids Res., 34 (2006),pp. D745-D748
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return