5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 3
Mar.  2009
Turn off MathJax
Article Contents

Revaluation of deuterostome phylogeny and evolutionary relationships among chordate subphyla using mitogenome data

doi: 10.1016/S1673-8527(08)60102-2
More Information
  • Corresponding author: E-mail address: wangyq@xmu.edu.cn (Yiquan Wang)
  • Received Date: 2008-06-27
  • Accepted Date: 2008-12-26
  • Rev Recd Date: 2008-12-23
  • Available Online: 2009-03-18
  • Publish Date: 2009-03-20
  • The traditional knowledge in textbooks indicated that cephalochordates were the closest relatives to vertebrates among all extant organisms. However, this opinion was challenged by several recent phylogenetic studies using hundreds of nuclear genes. The researchers suggested that urochordates, but not cephalochordates, should be the closest living relatives to vertebrates. In the present study, by using data generated from hundreds of mtDNA sequences, we revalue the deuterostome phylogeny in terms of whole mitochondrial genomes (mitogenomes). Our results firmly demonstrate that each of extant deuterostome phyla and chordate subphyla is monophyletic. But the results present several alternative phylogenetic trees depending on different sequence datasets used in the analysis. Although no clear phylogenetic relationships are obtained, those trees indicate that the ancient common ancestor diversified rapidly soon after their appearance in the early Cambrian and generated all major deuterostome lineages during a short historical period, which is consistent with “Cambrian explosion” revealed by paleontologists. It was the 520-million-year's evolution that obscured the phylogenetic relationships of extant deuterostomes. Thus, we conclude that an integrative analysis approach rather than simply using more DNA sequences should be employed to address the distant evolutionary relationship.
  • loading
  • [1]
    Abascal, F., Zardoya, R., Posada, D. ProtTest: Selection of best-fit models of protein evolution Bioinformatics, 21 (2005),pp. 2104-2105
    [2]
    Bergsten, J. A review of long-branch attraction Cladistics, 21 (2005),pp. 163-193
    [3]
    Blair, J.E., Hedges, S.B. Molecular phylogeny and divergence times of deuterostome animals Mol. Biol. Evol., 22 (2005),pp. 2275-2284
    [4]
    Boore, J.L. Animal mitochondrial genomes Nucleic Acids Res., 27 (1999),pp. 1767-1780
    [5]
    Boore, J.L., Brown, W.N. Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool Curr. Opin. Genet., 8 (1998),pp. 668-674
    [6]
    Boore, J.L., Collins, T.M., Stanton, D. et al. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements Nature, 376 (1995),pp. 163-165
    [7]
    Bourlat, S.J., Juliusdottir, T., Lowe, C.J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida Nature, 444 (2006),pp. 85-88
    [8]
    Cameron, C.B., Garey, J.R., Swalla, B.J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 4469-4474
    [9]
    Chen, J.Y., Huang, D.Y., Peng, Q.Q. et al. The first tunicate from the Early Cambrian of South China Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8314-8318
    [10]
    Delsuc, F., Brinkmann, H., Chourrout, D. et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates Nature, 439 (2006),pp. 965-968
    [11]
    Dornbos, S.Q., Bottjer, D.J. Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution Geology, 28 (2000),pp. 839-842
    [12]
    Fortey, R.A. The Cambrian explosion exploded? Science, 29 (2001),pp. 438-439
    [13]
    Gissi, C., Iannelli, F., Pesole, G. J. Mol. Evol., 58 (2004),pp. 376-389
    [14]
    Guindon, S., Gascuel, O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood Syst. Biol., 52 (2003),pp. 696-704
    [15]
    Lavrov, D.V., Brown, W.M., Boore, J.L. Phylogenetic position of the Pentastomida and (pan) crustacean relationships Proc. R. Soc. Lond., B, Biol. Sci., 271 (2004),pp. 537-544
    [16]
    Lee, Y.S., Oh, J., Kim, Y.U. et al. Mitome: Dynamic and interactive database for comparative mitochondrial genomics in metazoan animals Nucleic Acids Res., 36 (2008),pp. D938-D942
    [17]
    Levin, R. Ediacaran Fossils Science, 223 (1984),p. 1131
    [18]
    Maisey, J.G. Heads and tails: A chordate phylogeny Cladistics, 2 (1986),pp. 201-256
    [19]
    Mindell, D.P., Sorenson, M.D., Dimcheff, D.E. Multiple independent origins of mitochondrial gene order in birds Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 10693-10697
    [20]
    Morrison, C.L., Harvey, A.W., Lavery, S. et al. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form Proc. R. Soc. Lond., B, Biol. Sci., 269 (2002),pp. 345-350
    [21]
    Nohara, M., Nishida, M., Miya, M. et al. J. Mol. Evol., 60 (2005),pp. 526-537
    [22]
    Philippe, H., Lartillot, N., Brinkmann, H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia Mol. Biol. Evol., 22 (2005),pp. 1246-1253
    [23]
    Putnam, N.H., Butts, T., Ferrier, D.E. et al. The amphioxus genome and the evolution of the chordate karyotype Nature, 453 (2008),pp. 1064-1071
    [24]
    Saccone, S., Giorgi, C.D., Gissi, C. et al. Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system Gene, 238 (1999),pp. 195-209
    [25]
    Schaeffer, B. Deuterostome monophyly and phylogeny Evol. Biol., 21 (1987),pp. 179-235
    [26]
    Schmidt, H.A., Strimmer, K., Vingron, M. et al. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics, 18 (2002),pp. 502-504
    [27]
    Shimodaira, H., Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference Mol. Biol. Evol., 16 (1999),pp. 1114-1116
    [28]
    Shu, D.G., Morris, S.C., Han, J. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China) Nature, 414 (2001),pp. 419-424
    [29]
    Shu, D., Morris, S.C., Zhang, Z.F. et al. A new species of yunnanozoan with implications for deuterostome evolution Science, 299 (2003),pp. 1380-1384
    [30]
    Shu, D.G., Zhang, X., Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate Nature, 380 (1996),pp. 428-430
    [31]
    Smith, M.J., Arndt, A., Gorski, S. et al. The phylogeny of echinoderm classes based on mitochondrial gene arrangements J. Mol. Evol., 36 (1993),pp. 545-554
    [32]
    Turbeville, J.M., Schulz, J.R., Raff, R.A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology Mol. Biol. Evol., 11 (1994),pp. 648-655
    [33]
    Vienne, A., Pontarotti, P. Metaphylogeny of 82 gene families sheds a new light on chordate evolution Int. J. Biol. Sci., 2 (2006),pp. 32-37
    [34]
    Wada, H., Satoh, N. Proc. Natl. Acad. Sci., 91 (1994),pp. 1801-1804
    [35]
    Winchell, C.J., Sullivan, J., Cameron, C.B. et al. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data Mol. Biol. Evol., 19 (2002),pp. 762-776
    [36]
    Zhong, J., Li, G., liu, Z.Q. et al. Gene rearrangment of mitochondrial genome in vertebrate Acta Genet. Sin., 32 (2005),pp. 322-330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return