[1] |
Abascal, F., Zardoya, R., Posada, D. ProtTest: Selection of best-fit models of protein evolution Bioinformatics, 21 (2005),pp. 2104-2105
|
[2] |
Bergsten, J. A review of long-branch attraction Cladistics, 21 (2005),pp. 163-193
|
[3] |
Blair, J.E., Hedges, S.B. Molecular phylogeny and divergence times of deuterostome animals Mol. Biol. Evol., 22 (2005),pp. 2275-2284
|
[4] |
Boore, J.L. Animal mitochondrial genomes Nucleic Acids Res., 27 (1999),pp. 1767-1780
|
[5] |
Boore, J.L., Brown, W.N. Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool Curr. Opin. Genet., 8 (1998),pp. 668-674
|
[6] |
Boore, J.L., Collins, T.M., Stanton, D. et al. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements Nature, 376 (1995),pp. 163-165
|
[7] |
Bourlat, S.J., Juliusdottir, T., Lowe, C.J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida Nature, 444 (2006),pp. 85-88
|
[8] |
Cameron, C.B., Garey, J.R., Swalla, B.J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 4469-4474
|
[9] |
Chen, J.Y., Huang, D.Y., Peng, Q.Q. et al. The first tunicate from the Early Cambrian of South China Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8314-8318
|
[10] |
Delsuc, F., Brinkmann, H., Chourrout, D. et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates Nature, 439 (2006),pp. 965-968
|
[11] |
Dornbos, S.Q., Bottjer, D.J. Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution Geology, 28 (2000),pp. 839-842
|
[12] |
Fortey, R.A. The Cambrian explosion exploded? Science, 29 (2001),pp. 438-439
|
[13] |
Gissi, C., Iannelli, F., Pesole, G. J. Mol. Evol., 58 (2004),pp. 376-389
|
[14] |
Guindon, S., Gascuel, O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood Syst. Biol., 52 (2003),pp. 696-704
|
[15] |
Lavrov, D.V., Brown, W.M., Boore, J.L. Phylogenetic position of the Pentastomida and (pan) crustacean relationships Proc. R. Soc. Lond., B, Biol. Sci., 271 (2004),pp. 537-544
|
[16] |
Lee, Y.S., Oh, J., Kim, Y.U. et al. Mitome: Dynamic and interactive database for comparative mitochondrial genomics in metazoan animals Nucleic Acids Res., 36 (2008),pp. D938-D942
|
[17] |
Levin, R. Ediacaran Fossils Science, 223 (1984),p. 1131
|
[18] |
Maisey, J.G. Heads and tails: A chordate phylogeny Cladistics, 2 (1986),pp. 201-256
|
[19] |
Mindell, D.P., Sorenson, M.D., Dimcheff, D.E. Multiple independent origins of mitochondrial gene order in birds Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 10693-10697
|
[20] |
Morrison, C.L., Harvey, A.W., Lavery, S. et al. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form Proc. R. Soc. Lond., B, Biol. Sci., 269 (2002),pp. 345-350
|
[21] |
Nohara, M., Nishida, M., Miya, M. et al. J. Mol. Evol., 60 (2005),pp. 526-537
|
[22] |
Philippe, H., Lartillot, N., Brinkmann, H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia Mol. Biol. Evol., 22 (2005),pp. 1246-1253
|
[23] |
Putnam, N.H., Butts, T., Ferrier, D.E. et al. The amphioxus genome and the evolution of the chordate karyotype Nature, 453 (2008),pp. 1064-1071
|
[24] |
Saccone, S., Giorgi, C.D., Gissi, C. et al. Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system Gene, 238 (1999),pp. 195-209
|
[25] |
Schaeffer, B. Deuterostome monophyly and phylogeny Evol. Biol., 21 (1987),pp. 179-235
|
[26] |
Schmidt, H.A., Strimmer, K., Vingron, M. et al. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics, 18 (2002),pp. 502-504
|
[27] |
Shimodaira, H., Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference Mol. Biol. Evol., 16 (1999),pp. 1114-1116
|
[28] |
Shu, D.G., Morris, S.C., Han, J. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China) Nature, 414 (2001),pp. 419-424
|
[29] |
Shu, D., Morris, S.C., Zhang, Z.F. et al. A new species of yunnanozoan with implications for deuterostome evolution Science, 299 (2003),pp. 1380-1384
|
[30] |
Shu, D.G., Zhang, X., Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate Nature, 380 (1996),pp. 428-430
|
[31] |
Smith, M.J., Arndt, A., Gorski, S. et al. The phylogeny of echinoderm classes based on mitochondrial gene arrangements J. Mol. Evol., 36 (1993),pp. 545-554
|
[32] |
Turbeville, J.M., Schulz, J.R., Raff, R.A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology Mol. Biol. Evol., 11 (1994),pp. 648-655
|
[33] |
Vienne, A., Pontarotti, P. Metaphylogeny of 82 gene families sheds a new light on chordate evolution Int. J. Biol. Sci., 2 (2006),pp. 32-37
|
[34] |
Wada, H., Satoh, N. Proc. Natl. Acad. Sci., 91 (1994),pp. 1801-1804
|
[35] |
Winchell, C.J., Sullivan, J., Cameron, C.B. et al. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data Mol. Biol. Evol., 19 (2002),pp. 762-776
|
[36] |
Zhong, J., Li, G., liu, Z.Q. et al. Gene rearrangment of mitochondrial genome in vertebrate Acta Genet. Sin., 32 (2005),pp. 322-330
|