5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 2
Feb.  2009
Turn off MathJax
Article Contents

Histone modifications dictate specific biological readouts

doi: 10.1016/S1673-8527(08)60094-6
More Information
  • Corresponding author: E-mail address: anjanadurani@yahoo.co.in (Anjana Munshi)
  • Received Date: 2008-08-06
  • Accepted Date: 2008-10-30
  • Rev Recd Date: 2008-10-23
  • Available Online: 2009-02-13
  • Publish Date: 2009-02-20
  • The basic unit of chromatin is the nucleosomal core particle, containing 147 bp of DNA that wraps twice around an octamer of core histones. The core histones bear a highly dynamic N-terminal amino acid tail around 20–35 residues in length and rich in basic amino acids. These tails extending from the surface of nucleosome play an important role in folding of nucleosomal arrays into higher order chromatin structure, which plays an important role in eukaryotic gene regulation. The amino terminal tails protruding from the nuclesomes get modified by the addition of small groups such as methyl, acetyl and phosphoryl groups. In this review, we focus on these complex modification patterns and their biological functions. Moreover, these modifications seem to be part of a complex scheme where distinct histone modifications act in a sequential manner or in combination to form a “histone code” read by other proteins to control the structure and/or function of the chromatin fiber. Errors in this histone code may be involved in many human diseases especially cancer, the nature of which could be therapeutically exploited. Increasing evidence suggests that many proteins bear multiple, distinct modifications, and the ability of one modification to antagonize or synergize the deposition of another can have significant biological consequences.
  • loading
  • [1]
    Agalioti, T., Chen, G., Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene Cell, 111 (2002),pp. 381-392
    [2]
    Allfrey, V.G., Faulkner, R., Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis Proc. Natl. Acad Sci. USA, 51 (1964),pp. 786-794
    [3]
    Allison, L., Clayton, Louis, Mahadevan, C. MAP kinase mediated phosphorylation of histone H3 and inducible gene regulation FEBS lett., 546 (2003),pp. 51-58
    [4]
    Altaf, M., Saksouk, N., Côté, J. Histone modifications in response to DNA damage Mutat. Res., 618 (2007),pp. 81-90
    [5]
    Amann, J.M., Nip, J., Strom, D.K. et al. ETO, a target of t (8;21) in acute leukemia, makes distinct contact with multiple histones deacetylase and binds mSin3A through its oligomerization domain Mol. Cell. Biol., 21 (2001),pp. 6470-6483
    [6]
    Aravind, L., Iyer, L.M., Wellems, T.E. et al. Plasmodium biology: Genomic gleanings Cell, 115 (2003),pp. 771-785
    [7]
    Berger, S.L. Histone modifications in transcriptional regulation Curr. Opin. Genet. Dev., 12 (2002),pp. 142-148
    [8]
    Berger, S.L. The complex language of chromatin regulation during transcription Nature, 447 (2007),pp. 407-412
    [9]
    Bozdech, Z., Llinas, M., Pulliam, B.L. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum PLoS Biol., 1 (2003),p. E5
    [10]
    Briggs, S.D., Bryk, M., Strahl, B.D. et al. Genes Dev., 15 (2001),pp. 3286-3295
    [11]
    Brownell, J.E., Allis, C.D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation Curr. Opin. Genet. Dev., 6 (1996),pp. 176-184
    [12]
    Bryk, M., Briggs, S.D., Strahl, B.D. et al. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism Curr. Biol., 12 (2002),pp. 165-170
    [13]
    Camporeale, G., Shubert, E.E., Sarath, G. et al. K8 and K12 are biotinylated in human histone H4 Eur. J. Biochem., 271 (2004),pp. 2257-2263
    [14]
    Carrozza, M.J., Utley, R.T., Workman, J.L. et al. The diverse functions of histone acetyltransferase complexes Trends Genet., 19 (2003),pp. 321-329
    [15]
    Celeste, A., Fernandez-Capetillo, O., Kruhlak, M.J. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks Nat. Cell. Biol., 5 (2003),pp. 675-679
    [16]
    Chen, H., Yan, Y., Davidson, T.L. et al. Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells Cancer Res., 66 (2006),pp. 9009-9016
    [17]
    Chen, T., Sun, H., Lu, J. et al. Archives Biochem. Bioph., 408 (2002),pp. 171-176
    [18]
    Chen, Z.J., Tian, L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy Biochem. Biophys. Acta, 1769 (2007),pp. 295-307
    [19]
    Cheung, P., Allis, C.D., Sassone-Corsi, P. Signaling to chromatin through histone modifications Cell, 103 (2000),pp. 263-271
    [20]
    Chung, D. Histone modification: The ‘next wave’ in cancer therapeutics Trends Mol. Med., 8 (2002),pp. S10-S11
    [21]
    Clayton, A.L., Hazzalin, C.A., Mahadevan, L.C. Enhanced histone acetylation and transcription: A dynamic perspective Mol. Cell, 23 (2006),pp. 289-296
    [22]
    Crosio, C., Fimia, G.M., Loury, R. et al. Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian Aurora kinases Mol. Cell. Biol., 22 (2002),pp. 874-885
    [23]
    Davie, J.R. Covalent modifications of histones: Expression from chromatin templates Curr. Opin. Genet. Dev., 8 (1998),pp. 173-178
    [24]
    Dillon, N., Festenstein, R. Unraveling heterochromatin: Competition between positive and negative factors regulates accessibility Trends Genet., 18 (2002),pp. 252-258
    [25]
    Dou, Y., Bowen, J., Liu, Y. et al. Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin J. Cell Biol., 158 (2002),pp. 1161-1170
    [26]
    Dou, Y., Gorovsky, M.A. Mol. Cell, 6 (2000),pp. 225-231
    [27]
    Dou, Y., Gorovsky, M.A. Regulation of transcription by H1 phosphorylation in Tetrahymena is position independent and requires clustered sites Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 6142-6146
    [28]
    Dou, Y., Mizzen, C.A., Abrams, M. et al. Mol. Cell, 4 (1999),pp. 641-647
    [29]
    Downs, J.A., Allard, S., Jobin-Robitaille, O. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites Mol. Cell, 16 (2004),pp. 979-990
    [30]
    Downs, J.A., Lowndes, N.F., Jackson, S.P. Nature, 408 (2000),pp. 1001-1004
    [31]
    Ekwall, K., Olsson, T., Turner, B.M. et al. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres Cell, 91 (1997),pp. 1021-1032
    [32]
    Fernandez-Capetillo, O., Chen, H.T., Celeste, A. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1 Nat. Cell Biol., 4 (2002),pp. 993-997
    [33]
    Garcia, B.A., Busby, S.A., Shabanowitz, J. et al. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition J. Proteome Res., 4 (2005),pp. 2032-2042
    [34]
    Giet, R., Glover, D.M. J. Cell Biol., 152 (2001),pp. 669-682
    [35]
    Grunstein, M. Histone acetylation in chromatin structure and transcription Nature, 389 (1997),pp. 349-352
    [36]
    Harvey, A.C., Jackson, S.P., Downs, J.A. Genetics, 170 (2005),pp. 543-553
    [37]
    Heard, E., Rougeulle, C., Arnaud, D. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation Cell, 107 (2001),pp. 727-738
    [38]
    Hebbes, T.R., Thorne, A.W., Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin EMBO J., 7 (1988),pp. 1395-1402
    [39]
    Hebbes, T.R., Turner, C.H., Thorne, A.W. et al. A ‘minimal epitope’ anti-protein antibody that recognizes a single modified amino-acid Mol. Immunol., 26 (1989),pp. 865-873
    [40]
    Hellauer, K., Sirard, E., Turcotte, B. Decreased expression of specific genes in yeast cells lacking histone H1 J. Biol. Chem., 276 (2001),pp. 13587-13592
    [41]
    Hiragami, K., Festenstein, R. Heterochromatin protein 1: A pervasive controlling influence Cell Mol. Life Sci., 62 (2005),pp. 2711-2726
    [42]
    Hohmann, P. Phosphorylation of H1 histones Mol. Cell Biochem., 57 (1983),pp. 81-92
    [43]
    Huyen, Y., Zgheib, O., , Gorgoulis, V.G. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks Nature, 432 (2004),pp. 406-411
    [44]
    Hymes, J., Fleischhauer, K., Wolf, B. Biotinylation of histones by human serum biotinidase: Assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency Biochem. Mol. Med., 56 (1995),pp. 76-83
    [45]
    Iizuka, M., Smith, M.M. Functional consequences of histone modifications Curr. Opin. Genet. Dev., 13 (2003),pp. 154-160
    [46]
    Jenuwein, T. Re-SET-ting heterochromatin by histone methyltransferases Trends Cell. Biol., 11 (2001),pp. 266-273
    [47]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1080
    [48]
    Jeppesen, P., Turner, B.M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression Cell, 74 (1993),pp. 281-289
    [49]
    Kamakaka, R.T., Biggins, S. Histone variants: Deviants? Genes Dev., 19 (2005),pp. 295-310
    [50]
    Khan, A.U., Hampsey, M. Connecting the DOTs: Covalent histone modifications and the formation of silent chromatin Trends Genet., 18 (2000),pp. 387-389
    [51]
    Kothapalli, N., Zempleni, J. Biotinylation of histones depends on the cell cycle in NCI-H69 small cell lung cancer cells FASEB J., 19 (2005),p. A55
    [52]
    Kothapalli, N., Camporeale, G., Kueh, A. et al. Biological functions of biotinylated histones J. Nutr. Biochem., 16 (2005),pp. 446-448
    [53]
    Kou, M.H., Allis, C.D. Roles of histone acetyltranferases and deacetylases in gene regulation Bioessays, 20 (1998),pp. 615-626
    [54]
    Lachner, M., Jenuwein, T. The many faces of histone lysine methylation Curr. Opin. Cell Biol., 14 (2002),pp. 286-298
    [55]
    Mermoud, J.E., Popova, B., Peters, A.H. et al. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation Curr. Biol., 12 (2002),pp. 247-251
    [56]
    Miao, J., Fan, Q., Cui, L. et al. Gene, 369 (2006),pp. 53-65
    [57]
    Moore, S.C., Ausio, J. Major role of the histone H3-H4 in the folding of the chromatin fiber Biochem. Biophys. Res. Commun., 230 (1997),pp. 136-139
    [58]
    Nakamura, T.M., Du, L.L., Redon, C. et al. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast Mol. Cell. Biol., 24 (2004),pp. 6215-6230
    [59]
    Narang, M.A., Dumas, R., Ayer, L.M. et al. Reduced histone biotinylation in multiple carboxylase deficiency patients: A nuclear role for holocarboxylase synthetase Hum. Mol. Genet., 13 (2004),pp. 15-23
    [60]
    Neumeister, P., Albanese, C., Balent, B. et al. Senescence and epigenetic dysregulation in cancer Int. J. Biochem. Cell Biol., 34 (2002),pp. 1475-1490
    [61]
    Ozdag, H., Batley, S.J., Forsti, A. et al. Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours Br. J. Cancer, 87 (2002),pp. 1162-1165
    [62]
    Parthun, M.R., Widom, J., Gottschling, D.E. The major cytoplasmic histone acetylatransferase in yeast: Links to chromatin replication and histone metabolism Cell, 87 (1996),pp. 85-94
    [63]
    Peters, D.M., Griffin, J.B., Stanley, J.S. et al. Exposure to UV light causes increased biotinylation of histones in Jurkat cells Am. J. Cell Physiol., 283 (2002),pp. C878-C884
    [64]
    Peterson, C.L., Cote, J. Cellular machineries for chromosomal DNA repair Genes. Dev., 18 (2004),pp. 602-616
    [65]
    Peterson, C.L., Laniel, M.A. Histones and histone modifications Curr. Biol., 14 (2004),pp. R546-R551
    [66]
    Przyborski, J.M., Bartels, K., Lanzer, M. et al. Parasitol. Res., 90 (2003),pp. 387-389
    [67]
    Ren, Q., Gorovsky, M.A. Histone H2A.Z acetylation modulates an essential charge patch Mol. Cell, 7 (2001),pp. 1329-1335
    [68]
    Rice, J.C., Briggs, S.D., Ueberheide, B. et al. Histone methyltransferases direct different degrees of methylation of define distinct chromatin domains Mol. Cell, 12 (2003),pp. 1591-1598
    [69]
    Robzyk, K., Recht, J., Osley, M.A. Rad6-dependent ubiquitination of histone H2B in yeast Science, 287 (2000),pp. 501-504
    [70]
    Rogakou, E.P., Pilch, D.R., Orr, A.H. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 J. Biol. Chem., 27 (1998),pp. 5858-5868
    [71]
    Roth, S.Y., Allis, C.D. Chromatinacondensation. Does H1 dephosphorylation play a role? Trends Biochem. Sci., 17 (1992),pp. 93-98
    [72]
    Roth, S.Y., Denu, J.M., Allis, C.D. Histone acetylatransferases Ann. Rev. Biochem., 70 (2001),pp. 81-120
    [73]
    Rosa, S.H., Caldas, C. Chromatin modifier enzymes, the histone code and cancer Eur. J. Cancer, 41 (2005),pp. 2381-2402
    [74]
    Rosa, S.H., Schneider, R., Bannister, A.J. et al. Active genes are tri-methylated at K4 of histone H3 Nature, 419 (2002),pp. 407-411
    [75]
    Sarath, G., Kobza, K., Rueckert, B. et al. Biotinylation of human Histone H3 and interactions with biotinidase FASEB J., 18 (2004),p. A103
    [76]
    Shi, Y. Histone lysine demethylases emerging roles in development, physiology and disease Nat. Rev. Genet., 8 (2007),pp. 829-833
    [77]
    Shi, Y., Lan, F., Matson, C. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 Cell, 1197 (2004),pp. 941-953
    [78]
    Shroff, R., Arbel-Eden, A., Pilch, D. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break Curr. Biol., 14 (2004),pp. 1703-1711
    [79]
    Smallwood, A., Esteve, P.I., Pradhan, S. et al. Functional cooperation Hp1 and DNMT 1 mediates gene silencing Genes Dev., 21 (2007),pp. 1169-1178
    [80]
    Somech, R., Izrael, S., Simon, A.J. Histone deacetylase inhibitors?a new tool to treat cancer Cancer Treat. Rev., 30 (2004),pp. 461-472
    [81]
    Stanley, J.S., Griffin, J.B., Zempleni, J. Biotinylation of histones in human cells: Effects of cell proliferation FEBS J., 268 (2001),pp. 5424-5429
    [82]
    Stiff, T., O'Driscoll, M., Rief, N. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation Cancer Res., 64 (2004),pp. 2390-2396
    [83]
    Strahl, B.D., Allis, C.D. The language of covalent histone modifications Nature, 403 (2000),pp. 41-45
    [84]
    Strom, L., Lindroos, H.B., Shirahige, K. et al. Postreplicative recruitment of cohesin to double-stranded breaks in required for DNA repair Mol. Cell, 16 (2004),pp. 1003-1015
    [85]
    Taverna, S.D., Allis, D.C., Hake, S.B. Hunting for post-translational modifications that underline the histone code Int. J. Mass Spectrom., 259 (2007),pp. 40-45
    [86]
    Thiriet, C., Hayes, J.J. Chromatin in need of a fix: Phosphorylation of H2AX connects chromatin to DNA repair Mol. Cell, 18 (2005),pp. 617-622
    [87]
    Tse, C., Hansen, J.C. Hybrid trypsinized nucleosomal arrays: Identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fibre compaction Biochemistry, 36 (1997),pp. 11381-11388
    [88]
    Turner, B.M. Decoding the nucleosome Cell, 75 (1993),pp. 5-8
    [89]
    Turner, B.M., Birley, A.J., Lavender, J. Cell, 69 (1992),pp. 375-384
    [90]
    Ueberheide, B.M., Mollah, S. Deciphering the histone code using mass spectrometry Int. J. Mass Spectrom., 259 (2007),pp. 46-56
    [91]
    Unal, E., Arbel–Eden, A., Sattler, U. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain Mol. Cell, 16 (2004),pp. 991-1002
    [92]
    van Attikum, H., Gasser, S.M. The histone code at DNA breaks: A guide to repair? Nat. Rev. Mol. Cell. Biol., 6 (2005),pp. 757-765
    [93]
    van Leeuwen, F., Gafken, P.R., Gottschling, D.E. Dot1p modulates silencing in yeast by methylation of nucleosome core Cell, 109 (2002),pp. 745-756
    [94]
    Varreault, A., Kaufman, P.D., Kobayashi, R. et al. Nucleosomal DNA regulates the core–histone-binding subunit of the human Hat1 acetyltranferases Curr. Biol., 8 (1998),pp. 96-108
    [95]
    Verdin, E., Franck Dequiedt, F., Herbert, G.K. Class II histone deacetylases: Versatile regulators Trends Genet., 19 (2003),pp. 286-293
    [96]
    Waterborg, J.H. Histone synthesis and turnover in alfalfa. Fast loss of highly acetylated replacement histone variant H3 J. Biol. Chem., 268 (1993),pp. 4912-4917
    [97]
    Whetstine, J.R., Nottke, A., Lan, F. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases Cell, 125 (2006),pp. 467-481
    [98]
    Workman, P. Scoring a bull's-eye against cancer genome targets Curr. Opin. Pharmacol,, 1 (2001),pp. 342-352
    [99]
    Wurtele, H., Verreault, A. Histone post translational modifications and the response to DNA double strands breaks Curr. Opin. Cell Biol., 18 (2006),pp. 137-144
    [100]
    Wyatt, H.R., Liaw, H., Green, G.R. et al. Genetics, 164 (2003),pp. 47-64
    [101]
    Yap, K.L., Zhou, M.M. Structure and function of protein modules in chromatin biology Results. Probl. Cell Differ., 41 (2006),pp. 1-23
    [102]
    Zhang, Y., Reinberg, D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails Genes Dev., 15 (2001),pp. 2343-2360
    [103]
    Zhao, Y., Lu, S., WU, L. et al. Mol. Cell. Biol., 26 (2006),pp. 2782-2790
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return