5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 11
Nov.  2008
Turn off MathJax
Article Contents

Analysis of the meiosis in the F1 hybrids of Longiflorum × Asiatic (LA) of lilies (Lilium) using genomic in situ hybridization

doi: 10.1016/S1673-8527(08)60091-0
More Information
  • Corresponding author: E-mail address: zhou2007@zju.edu.cn (Shujun Zhou)
  • Received Date: 2008-06-21
  • Accepted Date: 2008-09-03
  • Rev Recd Date: 2008-07-14
  • Available Online: 2008-11-18
  • Publish Date: 2008-11-20
  • Longiflorum and Asiatic lilies of the genus Lilium of the family Liliaceae are two important groups of modern lily cultivars. One of the main trends of lily breeding is to realize introgression between these groups. With cut style pollination and embryo rescue, distant hybrids between the two groups have been obtained. However, the F1 hybrids are highly sterile or some of them could produce a small number of 2n gametes, and their BC1 progenies are usually triploids. Dutch lily breeders have selected many cultivars from these BC1 progenies based on their variation. It is presumably suggested that such variation could be caused by intergenomic recombination and abnormal meiosis during gamete formation in F1 hybrids of Longiflorum × Asiatic (LA) hybrids in Lilium. Therefore, the meiotic process of ten F1 LA hybrids was cytologically investigated using genomic in situ hybridization and traditional cytological methods in the present research. The results showed that: at metaphase I, the homoeologous chromosome pairing among different F1 hybrids ranged from 2.0 to 11.4 bivalents formed by homoeologous chromosomes per pollen mother cell (PMC), and very few multivalents, and even very few bivalents were formed by two chromosomes within one genome rather than homoeologous chromosomes in some PMCs; at anaphase I, all bivalents were disjoined and most univalents were divided. Both the disjoined bivalents (half-bivalents) and the divided univalents (sister chromatids) moved to the opposite poles, and then formed two groups of chromosomes; because the two resulting half-bivalents retained their axes in the cell undisturbed, many crossover types, including single crossovers, three strand double crossovers, four strand double crossovers, four strand triple crossovers, and four strand multiple crossovers between the non-sister chromatids in the tetrads of bivalents, were clearly inferred by analyzing the breakpoints on the disjoined bivalents. The present investigation not only explained the reason for sterility of the F1 LA hybrids and the variation of their BC1 progenies, but also provided a new method to analyze crossover types in other F1 interspecific hybrids as well.
  • loading
  • [1]
    Anamthawat-Jonsson, K., Schwarzacher, T., Leitch, A.R. et al. Discrimination between closely related Triticeae species using genomic DNA as a probe Theor. Appl. Genet., 79 (1990),pp. 721-728
    [2]
    Anderson, L.K., Doyle, G.G., Brigham, B. et al. Genetics, 165 (2003),pp. 849-865
    [3]
    Barba-Gonzalez, R., Lokker, B.H., Lim, K.B. et al. Theor. Appl. Genet., 109 (2004),pp. 1125-1132
    [4]
    Barba-Gonzalez, R., Lim, K.B., Ramanna, M.S. et al. Euphytica, 143 (2005),pp. 67-73
    [5]
    Barba-Gonzalez, R., Ramanna, M.S., Visser, R.G.F. et al. Genome, 48 (2005),pp. 884-894
    [6]
    Brandham, P.E. Genetica, 59 (1982),pp. 29-42
    [7]
    Chetelat, R.T., Cisneros, P., Stamova, L. et al. Euphytica, 95 (1997),pp. 99-108
    [8]
    Copenhaver, G.P., Housworth, E.A., Stahl, F.W. Genetics, 160 (2004),pp. 1631-1639
    [9]
    Emsweller, S.L., Jones, H.A. Amer. J. Bot., 32 (1945),pp. 370-379
    [10]
    Griffiths, A.J.F, Miller, J.H., Suzuki, D.T., Lewontin, R.C. et al.
    [11]
    Harushima, Y., Yano, M., Shomura, A. et al. Genetics, 148 (1998),pp. 479-494
    [12]
    Jacobsen, E., De Jong, J.H., Kamstra, S.A. et al. Heredity, 74 (1995),pp. 250-257
    [13]
    Ji, Y., Pertuze, R., Chetelat, R.T. Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades Chromosome Res., 12 (2004),pp. 107-116
    [14]
    Jongedijk, E., Ramanna, M.S. Genome, 32 (1989),pp. 1054-1062
    [15]
    Kamstra, S.A., Ramanna, M.S., De Jeu, M.J. et al. Heredity, 82 (1999),pp. 69-78
    [16]
    Karlov, G.I., Khrustaleva, L.I., Lim, K.B. et al. Genome, 42 (1999),pp. 681-686
    [17]
    Khrustaleva, L.I., Kik, C. Theor. Appl. Genet., 96 (1998),pp. 8-14
    [18]
    Khrustaleva, L.I., Kik, C. Theor. Appl. Genet., 100 (2000),pp. 17-26
    [19]
    Khrustaleva, L.I., De Melo, P.E., van Heusden, A.W. et al. The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid allium population Genetics, 169 (2005),pp. 1673-1685
    [20]
    King, J., Armstead, I.P., Donnison, I.S. et al. Genetics, 161 (2002),pp. 315-324
    [21]
    Kuipers, A.G.J., Van Os, D.P.M., De Jong, J.H. et al. Chromosome Res., 5 (1997),pp. 31-39
    [22]
    Lim, K.B., Chung, J.D., Van Kronenburg, B.C.E. et al. Chromosome Res., 8 (2000),pp. 119-125
    [23]
    Lim, K.B., Ramanna, M.S., de Jong, J.H. et al. Indeterminate restitution (IMR): A novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH Theor. Appl. Genet., 103 (2001),pp. 219-230
    [24]
    Lim, K.B., Ramanna, M.S., De Jong, J.H. et al. Theor. Appl. Genet., 106 (2003),pp. 568-574
    [25]
    Nilsson, N.O., Sall, T., Bengtsson, B.O. Chiasma and recombination data in plants: Are they compatible? Trends Genet., 9 (1993),pp. 344-348
    [26]
    Pickering, R.A. Genome, 34 (1991),pp. 666-673
    [27]
    Ramanna, M.S., Jacobsen, E. Relevance of sexual polyploidization for crop improvement-A review Euphytica, 133 (2003),pp. 3-18
    [28]
    Rogers, S.O., Bendich, A.J.
    [29]
    Schwarzacher, T., Leitch, A.R., Bennet, M.D. et al. Ann. Bot., 64 (1989),pp. 315-324
    [30]
    Stevenson, M., Armstrong, S.J., Ford-Lloyd, B.V. et al. Chromosome Res., 6 (1998),pp. 567-574
    [31]
    Takahashi, C., Leitch, I.J., Ryan, A. et al. Chromosoma, 105 (1997),pp. 342-348
    [32]
    Wang, Y.P., Zhao, X.X., Sonntag, K. et al. Chromosome Res., 13 (2005),pp. 819-826
    [33]
    Wu, H., Zhao, H., She, J. et al. Acta Genetica Sinica., 1 (1997),pp. 59-65
    [34]
    Zhang, X., Dong, Y., Li, Z. Acta Genetica Sinica, 5 (1993),pp. 439-447
    [35]
    Zhou, S. (2007). Intergenomic recombination and introgression breeding in Longiflorum x Asiatic lilies (Lilium). (Ph.D. thesis) Wageningen, The Netherlands, ISBN 90-8504-637-8.
    [36]
    Zhou, S., Ramanna, M.S., Visser, R.G.F. et al. Euphytica, 160 (2008),pp. 215-217
    [37]
    Zhou, Y., Wu, B., Yan, J. et al. Acta Bot. Yunnanica, 4 (2003),pp. 497-502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (65) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return