5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 11
Nov.  2008
Turn off MathJax
Article Contents

On the origin and evolution of new genes—a genomic and experimental perspective

doi: 10.1016/S1673-8527(08)60085-5
More Information
  • Corresponding author: E-mail address: wwang@mail.kiz.ac.cn (Wen Wang)
  • Received Date: 2008-08-30
  • Accepted Date: 2008-09-19
  • Rev Recd Date: 2008-09-18
  • Available Online: 2008-11-18
  • Publish Date: 2008-11-20
  • The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved young genes. Two indispensible steps are involved in this process: origin of new gene copies through various mutational mechanisms and evolution of novel functions, which further more leads to fixation of the new copies within populations. The theoretical framework for the former step formed in 1970s. Ohno proposed gene duplication as the most important mechanism producing new gene copies. He also believed that the most common fate for new gene copies is to become pseudogenes. This classical view was validated and was also challenged by the characterization of the first functional young gene jingwei in Drosophila. Recent genome-wide comparison on young genes of Drosophila has elucidated a comprehensive picture addressing remarkable roles of various mechanisms besides gene duplication during origin of new genes. Case surveys revealed it is not rare that new genes would evolve novel structures and functions to contribute to the adaptive evolution of organisms. Here, we review recent advances in understanding how new genes originated and evolved on the basis of genome-wide results and experimental efforts on cases. We would finally discuss the future directions of this fast-growing research field in the context of functional genomics era.
  • loading
  • [1]
    Altschmied, J., Delfgaauw, J., Wilde, B. et al. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish Genetics, 161 (2002),pp. 259-267
    [2]
    Arguello, J.R., Chen, Y., Yang, S. et al. PLoS Genet., 2 (2006),p. e77
    [3]
    Aury, J.M., Jaillon, O., Duret, L. et al. Nature, 444 (2006),pp. 171-178
    [4]
    Bai, Y., Casola, C., Feschotte, C. et al. Genome Biol., 8 (2007),p. R11
    [5]
    Bailey, J.A., Liu, G., Eichler, E.E. An Alu transposition model for the origin and expansion of human segmental duplications Am. J. Hum. Genet., 73 (2003),pp. 823-834
    [6]
    Begun, D.J., Lindfors, H.A., Kern, A.D. et al. Genetics, 176 (2007),pp. 1131-1137
    [7]
    Betran, E., Long, M. Genetics, 164 (2003),pp. 977-988
    [8]
    Bishop, A.J.R., Schiestl, R.H. Homologous recombination as a mechanism for genome rearrangements: Environmental and genetic effects Hum. Mol. Genet., 9 (2000),pp. 2334-2427
    [9]
    Brosius, J. Retroposons–seeds of evolution Science, 251 (1991),p. 753
    [10]
    Cai, J., Zhao, R., Jiang, H. et al. Genetics, 179 (2008),pp. 487-496
    [11]
    Charlesworth, D., Liu, F.L., Zhang, L. Mol. Biol. Evol., 15 (1998),pp. 552-559
    [12]
    Chen, S.T., Cheng, H.C., Barbash, D.A. et al. PLoS Genet., 3 (2007),p. e107
    [13]
    Clark, A.G. Invasion and maintenance of a gene duplication Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 2950-2954
    [14]
    Clark, A.G., Eisen, M.B., Smith, D.R. et al. Nature, 450 (2007),pp. 203-218
    [15]
    Courseaux, A., Nahon, J.L. Birth of two chimeric genes in the Hominidae lineage Science, 291 (2001),pp. 1293-1297
    [16]
    Dai, H., Chen, Y., Chen, S. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 7478-7483
    [17]
    de Koning, A.P., Brinkman, F.S., Jones, S.J. et al. Mol. Biol. Evol., 17 (2000),pp. 1769-1773
    [18]
    Dean, E.J., Davis, J.C., Davis, R.W. et al. Pervasive and persistent redundancy among duplicated genes in yeast PLoS Genet., 4 (2008),p. e1000113
    [19]
    Drouin, G., Dover, G.A. Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes J. Mol. Evol., 31 (1990),pp. 132-150
    [20]
    Enard, W., Przeworski, M., Fisher, S.E. et al. Nature, 418 (2002),pp. 869-872
    [21]
    Force, A., Lynch, M., Pickett, F.B. et al. Preservation of duplicate genes by complementary, degenerative mutations Genetics, 151 (1999),pp. 1531-1545
    [22]
    Fortna, A., Kim, Y., MacLaren, E. et al. Lineage-specific gene duplication and loss in human and great ape evolution PLoS Biol., 2 (2004),p. e207
    [23]
    Gao, L., Innan, H. Very low gene duplication rate in the yeast genome Science, 306 (2004),pp. 1367-1370
    [24]
    Gilbert, W. Why genes in pieces? Nature, 271 (1978),p. 501
    [25]
    Gu, Z., Cavalcanti, A., Chen, F.-C. et al. Mol. Biol. Evol., 19 (2002),pp. 256-262
    [26]
    Gu, Z., Steinmetz, L.M., Gu, X. et al. Role of duplicate genes in genetic robustness against null mutations Nature, 421 (2003),pp. 63-66
    [27]
    Hahn, M.W., Han, M.V., Han, S.-G. PLoS Genet., 3 (2007),p. e197
    [28]
    Haldane, J.B.S.
    [29]
    Hillenmeyer, M.E., Fung, E., Wildenhain, J. et al. The chemical genomic portrait of yeast: Uncovering a phenotype for all genes Science, 320 (2008),pp. 362-365
    [30]
    Hittinger, C.T., Carroll, S.B. Gene duplication and the adaptive evolution of a classic genetic switch Nature, 449 (2007),pp. 677-681
    [31]
    Hotopp, J.C.D., Clark, M.E., Oliveira, D.C.S.G. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes Science, 317 (2007),pp. 1753-1756
    [32]
    Jacob, F. Evolution and tinkering Science, 196 (1977),pp. 1161-1166
    [33]
    Katju, V., Lynch, M. Mol. Biol. Evol., 23 (2006),pp. 1056-1067
    [34]
    Keeling, P.J., Palmer, J.D. Horizontal gene transfer in eukaryotic evolution Nat. Rev. Genet., 9 (2008),pp. 605-618
    [35]
    Kidd, J.M., Cooper, G.M., Donahue, W.F. et al. Mapping and sequencing of structural variation from eight human genomes Nature, 453 (2008),pp. 56-64
    [36]
    Koonin, E.V., Makarova, K.S., Aravind, L. Horizontal gene transfer in prokaryotes: Quantification and classification Annu. Rev. Microbiol., 55 (2001),pp. 709-742
    [37]
    Levine, M.T., Jones, C.D., Kern, A.D. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 9935-9939
    [38]
    Li, W.H. (1997). Molecular Evolution. (Sunderland).
    [39]
    Long, M. Journal club Nature, 449 (2007),p. 511
    [40]
    Long, M., Langley, C.H. Science, 260 (1993),pp. 91-95
    [41]
    Long, M., Betran, E., Thornton, K. et al. The origin of new genes: Glimpses from the young and old Nat. Rev. Genet., 4 (2003),pp. 865-875
    [42]
    Lu, J., Shen, Y., Wu, Q. et al. Nat. Genet., 40 (2008),pp. 351-355
    [43]
    Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
    [44]
    Lynch, M., Force, A. The probability of duplicate gene preservation by subfunctionalization Genetics, 154 (2000),pp. 459-473
    [45]
    Marioni, J., Mason, C., Mane, S. et al. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays Genome Res., 18 (2008),pp. 1509-1517
    [46]
    Marques, A.C., Dupanloup, I., Vinckenbosch, N. et al. Emergence of young human genes after a burst of retroposition in primates PLoS Biol., 3 (2005),p. e357
    [47]
    Martignetti, J.A., Brosius, J. Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 11563-11567
    [48]
    Muller, H.J. The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere Genetica, 17 (1935),pp. 237-252
    [49]
    Nowak, M.A., Boerlijst, M.C., Cooke, J. et al. Evolution of genetic redundancy Nature, 388 (1997),pp. 167-171
    [50]
    Nurminsky, D.I., Nurminskaya, M.V., De Aguiar, D. et al. Nature, 396 (1998),pp. 572-575
    [51]
    Ohno, S.
    [52]
    Ohno, S. Ancient linkage groups and frozen accidents Nature, 244 (1973),pp. 259-262
    [53]
    Pan, D., Zhang, L. Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: A novel strategy to estimate gene duplication rates Genome Biol., 8 (2007),p. R158
    [54]
    Patthy, L. Exon shuffling and other ways of module exchange Matrix Biol., 15 (1996),pp. 301-310
    [55]
    Patthy, L. Genome evolution and the evolution of exon-shuffling—a review Gene, 238 (1999),pp. 103-114
    [56]
    Pollard, K.S., Salama, S.R., Lambert, N. et al. An RNA gene expressed during cortical development evolved rapidly in humans Nature, 443 (2006),pp. 167-172
    [57]
    Rosso, L., Marques, A.C., Reichert, A.S. et al. Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection PLoS Genet., 4 (2008),p. e1000150
    [58]
    Rosso, L., Marques, A.C., Weier, M. et al. PLoS Biol., 6 (2008),p. e140
    [59]
    Roth, D., Wilson, J.
    [60]
    Roth, D.B., Porter, T.N., Wilson, J.H. Mechanisms of nonhomologous recombination in mammalian cells Mol. Cell. Biol., 5 (1985),pp. 2599-2607
    [61]
    Semon, M., Wolfe, K.H. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 8333-8338
    [62]
    Sikela, J.M. The jewels of our genome: The search for the genomic changes underlying the evolutionarily unique capacities of the human brain PLoS Genet., 2 (2006),p. e80
    [63]
    Tamura, K., Subramanian, S., Kumar, S. Mol. Biol. Evol., 21 (2004),pp. 36-44
    [64]
    Tumpel, S., Cambronero, F., Wiedemann, L.M. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5419-5424
    [65]
    Walsh, B. Population-genetic models of the fates of duplicate genes Genetica, 118 (2003),pp. 279-294
    [66]
    Walsh, J.B. How often do duplicated genes evolve new functions? Genetics, 139 (1995),pp. 421-428
    [67]
    Wang, W., Brunet, F.G., Nevo, E. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 4448-4453
    [68]
    Wang, W., Yu, H., Long, M. Nat. Genet., 36 (2004),pp. 523-527
    [69]
    Wang, W., Zhang, J., Alvarez, C. et al. Mol. Biol. Evol., 17 (2000),pp. 1294-1301
    [70]
    Wang, W., Zheng, H., Fan, C. et al. High rate of chimeric gene origination by retroposition in plant genomes Plant Cell, 18 (2006),pp. 1791-1802
    [71]
    Wolfe, K.H., Shields, D.C. Molecular evidence for an ancient duplication of the entire yeast genome Nature, 387 (1997),pp. 708-713
    [72]
    Yang, S., Arguello, J.R., Li, X. et al. PLoS Genet., 4 (2008),p. e3
    [73]
    Yu, H., Jiang, H., Zhou, Q. et al. Hum. Mol. Genet., 15 (2006),pp. 1870-1875
    [74]
    Zhang, J., Zhang, Y., Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey Nat. Genet., 30 (2002),pp. 411-415
    [75]
    Zhang, R., Peng, Y., Wang, W. et al. Rapid evolution of an X-linked microRNA cluster in primates Genome Res., 17 (2007),pp. 612-617
    [76]
    Zhang, Y., Sturgill, D., Parisi, M. et al. Nature, 450 (2007),pp. 233-237
    [77]
    Zhang, Y., Wu, Y., Liu, Y. et al. Plant Physiol., 138 (2005),pp. 935-948
    [78]
    Zhou, Q., Zhang, G., Zhang, Y. et al. Genome Res., 18 (2008),pp. 1446-1455
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return