5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 10
Oct.  2008

Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death

doi: 10.1016/S1673-8527(08)60081-8
More Information
  • Corresponding author: E-mail address: schnable@iastate.edu (Patrick S. Schnable)
  • Received Date: 2007-07-25
  • Accepted Date: 2008-07-10
  • Rev Recd Date: 2008-06-25
  • Available Online: 2008-10-18
  • Publish Date: 2008-10-20
  • The maize (Zea mays) spikelet consists of two florets, each of which contains three developmentally synchronized anthers. Morphologically, the anthers in the upper and lower florets proceed through apparently similar developmental programs. To test for global differences in gene expression and to identify genes that are coordinately regulated during maize anther development, RNA samples isolated from upper and lower floret anthers at six developmental stages were hybridized to cDNA microarrays. Approximately 9% of the tested genes exhibited statistically significant differences in expression between anthers in the upper and lower florets. This finding indicates that several basic biological processes are differentially regulated between upper and lower floret anthers, including metabolism, protein synthesis and signal transduction. Genes that are coordinately regulated across anther development were identified via cluster analysis. Analysis of these results identified stage-specific, early in development, late in development and bi-phasic expression profiles. Quantitative RT-PCR analysis revealed that four genes whose homologs in other plant species are involved in programmed cell death are up-regulated just prior to the time the tapetum begins to visibly degenerate (i.e., the mid-microspore stage). This finding supports the hypothesis that developmentally normal tapetal degeneration occurs via programmed cell death.
  • [1]
    Altschul, S.F., Gish, W., Miller, W. et al. Basic local alignment search tool J. Mol. Biol., 215 (1990),pp. 403-410
    [2]
    Altschul, S.F., Madden, T.L., Schaffer, A.A. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs Nucleic Acids Res., 25 (1997),pp. 3389-3402
    [3]
    Aouali, N., Laporte, P., Clement, C. Planta, 213 (2001),pp. 71-79
    [4]
    Baldi, P., Brunak, S.
    [5]
    Bedinger, P., Edgerton, M.D. Developmental staging of maize microspores reveals a transition in developing microspore proteins Plant Physiol., 92 (1990),pp. 474-479
    [6]
    Bedinger, P., Russell, S.D.
    [7]
    Bevan, M., Bancroft, I., Mewes, H.W. et al. Bioessays, 21 (1999),pp. 110-120
    [8]
    Bevan, M., Bancroft, I., Bent, E. et al. Nature, 391 (1998),pp. 485-488
    [9]
    Buchanan, B.B., Gruissem, W., Jones, R.L.
    [10]
    Cacharrón, J., Saedler, H., Theissen, G. Dev. Genes Evol., 209 (1999),pp. 411-420
    [11]
    Chitnis, P.R. PHOTOSYSTEM I: Function and physiology Annu. Rev. Plant Physiol. Plant Mol. Biol., 52 (2001),pp. 593-626
    [12]
    Coe, E.H., McCormick, S., Modena, S. White pollen in maize J. Hered., 72 (1981),pp. 318-320
    [13]
    DeGuzman, R., Riggs, C.D. A survey of proteinases active during meiotic development Planta, 210 (2000),pp. 921-924
    [14]
    Dudoit, S., Fridlyand, J. A prediction-based resampling method for estimating the number of clusters in a dataset Genome Boil., 3 (2002)
    [15]
    Grotewold, E. The genetics and biochemistry of floral pigments Annu. Rev. Plant. Biol., 57 (2006),pp. 761-780
    [16]
    Helentjaris, T., Weber, D., Wright, S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms Genetics, 118 (1988),pp. 353-363
    [17]
    Hellmann, H., Estelle, M. Plant development: Regulation by protein degradation Science, 297 (2002),pp. 793-797
    [18]
    Horner, H.T., Palmer, R.G. Mechanisms of genic male sterility Crop Sci., 35 (1995),pp. 1527-1535
    [19]
    Hsu, S.-Y., Peterson, P.A. The upper and lower florets of spikelets in maize J. Genet. Breeding, 45 (1991),pp. 215-222
    [20]
    Hsu, S.-Y., Huang, Y.-C., Peterson, P.A. Maydica, XXXIII (1988),pp. 77-98
    [21]
    Kapoor, S., Kobayashi, A., Takatsuji, H. Plant Cell, 14 (2002),pp. 2353-2367
    [22]
    Kobayashi, A., Sakamoto, A., Kubo, K. et al. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia Plant J., 13 (1998),pp. 571-576
    [23]
    Lee, S.-L.J., Warmke, H.E. Organelle size and number in fertile and T-cytoplasmic male-sterile corn Am. J. Bot., 66 (1979),pp. 141-148
    [24]
    Li, N., Zhang, D.S., Liu, H.S. et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development Plant Cell, 18 (2006),pp. 2999-3014
    [25]
    Liu, F., Cui, X., Horner, H.T. et al. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize Plant Cell, 13 (2001),pp. 1063-1078
    [26]
    Liu, F., Schnable, P.S. Functional specialization of maize mitochondrial aldehyde dehydrogenases Plant Physiol., 130 (2002),pp. 1657-1674
    [27]
    Ma, H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants Annu. Rev. Plant. Biol., 56 (2005),pp. 393-434
    [28]
    Mandaron, P.M., Niogret, F., Mache, R. et al. Theor. Appl. Genet., 80 (1990),pp. 134-138
    [29]
    Mewes, H.W., Albermann, K., Bahr, M. et al. Overview of the yeast genome Nature, 387 (1997),pp. 7-65
    [30]
    Mo, Y., Nagel, C., Taylor, L.P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 7213-7217
    [31]
    Nair, R.B., Bastress, K.L., Ruegger, M.O. et al. Plant Cell, 16 (2004),pp. 544-554
    [32]
    Nakazono, M., Qiu, F., Borsuk, L.A. et al. Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: Identification of genes expressed differentially in epidermal cells or vascular tissues of maize Plant Cell, 15 (2003),pp. 583-596
    [33]
    op den Camp, R.G., Kuhlemeier, C. Aldehyde dehydrogenase in tobacco pollen Plant Mol., 35 (1997),pp. 355-365
    [34]
    Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res., 29 (2001),p. e45
    [35]
    Poovaiah, B.W., Xia, M., Liu, Z. et al. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers Planta, 209 (1999),pp. 161-171
    [36]
    Reed, J.C. Mechanisms of apoptosis J. Pathol., 157 (2000),pp. 1415-1430
    [37]
    Riley, M. Microbiol Rev., 57 (1993),pp. 862-952
    [38]
    Samach, A., Klenz, J.E., Kohalmi, S.E. et al. Plant J., 20 (1999),pp. 433-445
    [39]
    Scheller, H.V., Jensen, P.E., Haldrup, A. et al. Role of subunits in eukaryotic Photosystem I Biochim. Biophys. Acta, 1507 (2001),pp. 41-60
    [40]
    Skibbe, D.S., Schnable, P.S. Male sterility in maize Maydica, 50 (2005),pp. 367-376
    [41]
    Skibbe, D.S., Wang, X., Zhao, X. et al. Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes Bioinformatics, 22 (2006),pp. 1863-1870
    [42]
    Skibbe, D.S., Liu, F., Wen, T.J. et al. Plant Mol. Biol., 48 (2002),pp. 751-764
    [43]
    Steiglitz, H. Role of beta-1,3 glucanase in post-meiotic microspore release Dev. Biol., 57 (1977),pp. 87-97
    [44]
    Storey, J.D., Tibshirani, R. Statistical significance for genomewide studies Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 9440-9445
    [45]
    Sullivan, J.A., Shirasu, K., Deng, X.W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants Nat. Rev. Genet., 4 (2003),pp. 948-958
    [46]
    Swidzinski, J.A., Leaver, C.J., Sweetlove, L.J. A proteomic analysis of plant programmed cell death Phytochemistry, 65 (2004),pp. 1829-1838
    [47]
    Tadege, M., Kuhlemeier, C. Aerobic fermentation during tobacco pollen development Plant Mol. Biol., 35 (1997),pp. 343-354
    [48]
    Tadege, M., Dupuis, I.I., Kuhlemeier, C. Ethanolic fermentation: New functions for an old pathway Trends Plant Sci., 4 (1999),pp. 320-325
    [49]
    Taylor, A.A., Horsch, A., Rzepczyk, A. et al. Maturation and secretion of a serine proteinase is associated with events of late microsporogenesis Plant J., 12 (1997),pp. 1261-1271
    [50]
    Tsuji, H., Meguro, N., Suzuki, Y. et al. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice FEBS Lett., 546 (2003),pp. 369-373
    [51]
    Vierstra, R.D. Proteolysis in plants: Mechanisms and functions Plant Mol. Biol., 32 (1996),pp. 275-302
    [52]
    Vierstra, R.D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins Trends Plant Sci., 8 (2003),pp. 135-142
    [53]
    Vizcay-Barrena, G., Wilson, Z.A. J. Exp. Bot., 57 (2006),pp. 2709-2717
    [54]
    Wang, M., Hoekstra, S., van Bergen, S. et al. Plant Mol. Biol., 39 (1999),pp. 489-501
    [55]
    Warmke, H.E., Lee, S.-L. Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers J. Hered., 68 (1977),pp. 213-222
    [56]
    Wilson, Z.A., Morroll, S.M., Dawson, J. et al. Plant J., 28 (2001),pp. 27-39
    [57]
    Wise, R.P., Bronson, C.R., Schnable, P.S. et al. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize Advance in Agronomy, 65 (1999),pp. 79-130
    [58]
    Wolfinger, R.D., Gibson, G., Wolfinger, E.D. et al. Assessing gene significance from cDNA microarray expression data via mixed models J. Comput. Biol., 8 (2001),pp. 625-637
    [59]
    Zhao, D., Yu, Q., Chen, M. et al. Development, 128 (2001),pp. 2735-2746
  • Relative Articles

    [1]Lei Gao, Haifang Jiang, Minze Li, Danfeng Wang, Hongtao Xiang, Rong Zeng, Limei Chen, Xiaoyan Zhang, Jianru Zuo, Shuhua Yang, Yiting Shi. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.004
    [2]Lindsey B. Turnbull, Katrina A. Button-Simons, Nestor Agbayani, Michael T. Ferdig. Sources of transcription variation in Plasmodium falciparum[J]. Journal of Genetics and Genomics, 2022, 49(10): 965-974. doi: 10.1016/j.jgg.2022.03.008
    [3]Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001
    [4]Mingjie Lyu, Huafeng Liu, Joram Kiriga Waititu, Ying Sun, Huan Wang, Junjie Fu, Yanhui Chen, Jun Liu, Lixia Ku, Xiliu Cheng. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize[J]. Journal of Genetics and Genomics, 2021, 48(11): 961-971. doi: 10.1016/j.jgg.2021.07.010
    [5]Jacob D. Washburn, Mitchell J. McElfresh, James A. Birchler. Progressive heterosis in genetically defined tetraploid maize[J]. Journal of Genetics and Genomics, 2019, 46(8): 389-396. doi: 10.1016/j.jgg.2019.02.010
    [6]Tian Tian, Qi You, Hengyu Yan, Wenying Xu, Zhen Su. MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels[J]. Journal of Genetics and Genomics, 2018, 45(7): 351-360. doi: 10.1016/j.jgg.2018.05.007
    [7]Riliang Gu, Fanjun Chen, Lizhi Long, Hongguang Cai, Zhigang Liu, Jiabo Yang, Lifeng Wang, Huiyong Li, Junhui Li, Wenxin Liu, Guohua Mi, Fusuo Zhang, Lixing Yuan. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize[J]. Journal of Genetics and Genomics, 2016, 43(11): 663-672. doi: 10.1016/j.jgg.2016.11.002
    [8]Chao Feng, Jing Yuan, Rui Wang, Yang Liu, James A. Birchler, Fangpu Han. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System[J]. Journal of Genetics and Genomics, 2016, 43(1): 37-43. doi: 10.1016/j.jgg.2015.10.002
    [9]Jinjie Zhu, Ning Song, Silong Sun, Weilong Yang, Haiming Zhao, Weibin Song, Jinsheng Lai. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9[J]. Journal of Genetics and Genomics, 2016, 43(1): 25-36. doi: 10.1016/j.jgg.2015.10.006
    [10]Carson M. Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E. Koch, M. Elizabeth Stroupe, Carolyn J. Lawrence, Hank W. Bass. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation[J]. Journal of Genetics and Genomics, 2014, 41(12): 627-647. doi: 10.1016/j.jgg.2014.10.004
    [11]Stefanie Dukowic-Schulze, Anthony Harris, Junhua Li, Anitha Sundararajan, Joann Mudge, Ernest F. Retzel, Wojciech P. Pawlowski, Changbin Chen. Comparative Transcriptomics of Early Meiosis in Arabidopsis and Maize[J]. Journal of Genetics and Genomics, 2014, 41(3): 139-152. doi: 10.1016/j.jgg.2013.11.007
    [12]Qin Li, Xiang Jin, Yu-Xian Zhu. Identification and Analyses of miRNA Genes in Allotetraploid Gossypium hirsutum Fiber Cells Based on the Sequenced Diploid G. raimondii Genome[J]. Journal of Genetics and Genomics, 2012, 39(7): 351-360. doi: 10.1016/j.jgg.2012.04.008
    [13]Xifeng Chen, Zhimin Gu, Dedong Xin, Liang Hao, Chengjie Liu, Ji Huang, Bojun Ma, Hongsheng Zhang. Identification and characterization of putative CIPK genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2): 77-87. doi: 10.1016/j.jcg.2011.01.005
    [14]Xueling Huang, Xianming Chen, Tristan Coram, Meinan Wang, Zhensheng Kang. Gene expression profiling of Puccinia striiformis f. sp. tritici during development reveals a highly dynamic transcriptome[J]. Journal of Genetics and Genomics, 2011, 38(8): 357-371. doi: 10.1016/j.jgg.2011.07.004
    [15]Rick E. Masonbrink, James A. Birchler. Sporophytic nondisjunction of the maize B chromosome at high copy numbers[J]. Journal of Genetics and Genomics, 2010, 37(1): 79-84. doi: 10.1016/S1673-8527(09)60027-8
    [16]Jiang Tan, Hui Huang, Wei Huang, Lin Li, Jianhua Guo, Baiqu Huang, Jun Lu. The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells[J]. Journal of Genetics and Genomics, 2008, 35(10): 585-593. doi: 10.1016/S1673-8527(08)60079-X
    [17]Yijun Wang, Guangming Yin, Qin Yang, Jihua Tang, Xiaomin Lu, Schuyler S. Korban, Mingliang Xu. Identification and isolation of Mu-flanking fragments from maize[J]. Journal of Genetics and Genomics, 2008, 35(4): 207-213. doi: 10.1016/S1673-8527(08)60029-6
    [18]Hao Wang, Jishuai Zhang, Qiang Sun, Xiao Yang. Altered Gene Expression in Articular Chondrocytes of Smad3ex8/ex8 Mice, Revealed by Gene Profiling Using Microarrays[J]. Journal of Genetics and Genomics, 2007, 34(8): 698-708. doi: 10.1016/S1673-8527(07)60079-4
    [19]Chuanxiao Xie, Shihuang Zhang, Minshun Li, Xinhai Li, Zhuanfang Hao, Li Bai, Degui Zhang, Yehong Liang. Inferring Genome Ancestry and Estimating Molecular Relatedness Among 187 Chinese Maize Inbred Lines[J]. Journal of Genetics and Genomics, 2007, 34(8): 738-748. doi: 10.1016/S1673-8527(07)60083-6
    [20]Chunmei Wang, Qingzhang Li. Identification of Differentially Expressed MicroRNAs During the Development of Chinese Murine Mammary Gland[J]. Journal of Genetics and Genomics, 2007, 34(11): 966-973. doi: 10.1016/S1673-8527(07)60109-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return