[1] |
Abagyan, R., Totrov, M., Kuznetsov, D. ICM—a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation J. Comp. Chem., 15 (1994),pp. 488-506
|
[2] |
Abagyan, R., Totrov, M.M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins J. Mol. Biol., 235 (1994),pp. 983-1002
|
[3] |
Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases Chem. Res. Toxicol., 10 (1997),pp. 2-18
|
[4] |
Bloom, J.D., Labthavikul, S.T., Otey, C.R. Protein stability promotes evolvability Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5869-5874
|
[5] |
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976),pp. 248-254
|
[6] |
Caccuri, A.M., Ascenzi, P., Antonini, G. Structural flexibility modulates the activity of human glutathione transferase P1-1. INFLUENCE OF A POOR CO-SUBSTRATE ON DYNAMICS AND KINETICS OF HUMAN GLUTATHIONE TRANSFERASE J. Biol. Chem., 271 (1996),pp. 16193-16198
|
[7] |
Caccuri, A.M., Antonini, G., Nicotra, M. et al. J. Biol. Chem., 272 (1997),pp. 29681-29686
|
[8] |
Caccuri, A.M., Lo Bello, M., Nuccetelli, M. et al. Proton release upon glutathione binding to glutathione transferase P1-1: Kinetic analysis of a multistep glutathione binding process Biochemistry, 37 (1998),pp. 3028-3034
|
[9] |
Cardoso, R.M., Daniels, D.S., Bruns, C.M. et al. Proteins, 51 (2003),pp. 137-146
|
[10] |
Chen, D., Kawarasaki, Y., Nakano, H. et al. J. Biosci. Bioeng., 95 (2003),pp. 594-600
|
[11] |
Coggan, M., Liu, D., Chelvanayagam, G., Anderson, W.G., Anders, M.W., Board, P.G. (2000). Evaluation of possible active site residues in GSTZ 1-1. In Proceedings of GST 2000 International Conference on Glutathione Transferases. Uppsala, Sweden. pp. 26.
|
[12] |
Dixon, D.P., Cole, D.J., Edwards, R. Arch. Biochem. Biophys., 384 (2000),pp. 407-412
|
[13] |
Dixon, D.P., Lapthorn, A., Edwards, R. Plant glutathione transferases Genome Biol, 3 (2002),pp. 3004.1-3004.10
|
[14] |
Edwards, R. Physiol. Plant., 98 (1996),pp. 594-604
|
[15] |
Fritz-Wolf, K., Becker, A., Rahlfs, S. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 13821-13826
|
[16] |
Georgescu, R., Bandara, G., Sun, L.
|
[17] |
Grahn, E., Novotny, M., Jakobsson, E. New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix Acta Crystallogr. D. Biol. Crystallogr., 62 (2006),pp. 197-207
|
[18] |
Guo, H.H., Choe, J., Loeb, L.A. Protein tolerance to random amino acid change Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9205-9210
|
[19] |
Labrou, N.E., Rigden, D.J., Clonis, Y.D. Biomol. Eng., 21 (2004),pp. 61-66
|
[20] |
Markiewicz, P., Kleina, L.G., Cruz, C. et al. J. Mol. Biol., 240 (1994),pp. 421-433
|
[21] |
Ng, PC., Henikoff, S. Predicting deleterious amino acid substitutions Genome Res., 11 (2001),pp. 863-874
|
[22] |
Park, S., Morley, K.L., Horsman, G.P. et al. Chem. Biol., 12 (2005),pp. 45-54
|
[23] |
Polekhina, G., Board, P.G., Blackburn, A.C. et al. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity Biochemistry, 40 (2001),pp. 1567-1576
|
[24] |
Rennell, D., Bouvier, S.E., Hardy, L.W. et al. Systematic mutation of bacteriophage T4 lysozyme J. Mol. Biol., 222 (1991),pp. 67-88
|
[25] |
Ricci, G., Turella, P., de Maria, F. et al. Binding and kinetic mechanisms of the zeta class glutathione transferase J. Biol. Chem., 279 (2004),pp. 33336-33342
|
[26] |
Saunders, C.T., Baker, D. Evaluation of structural and evolutionary contributions to deleterious mutation prediction J. Mol. Biol., 322 (2002),pp. 891-901
|
[27] |
Seltzer, S. Purification and properties of maleylacetone cis-trans isomerase from vibrio 01 J. Biol. Chem., 248 (1973),pp. 215-222
|
[28] |
Tao, S., Chen, X., Liu, J. et al. Prog. Biochem. Biophys., 35 (2008),pp. 208-216
|
[29] |
Sun, Y.J., Kuan, I.C., Tam, M.F. et al. J. Mol. Biol., 278 (1998),pp. 239-252
|
[30] |
Thom, R., Dixon, D.P., Edwards, R. et al. J. Mol. Biol., 308 (2001),pp. 949-962
|
[31] |
Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids Chem. Res. Toxicol., 11 (1998),pp. 1332-1338
|
[32] |
Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid Biochem. J., 331 (1998),pp. 371-374
|
[33] |
Vargo, M.A., Nguyen, L., Colman, R.F. Biochemistry, 43 (2004),pp. 3327-3335
|
[34] |
Winayanuwattikun, P., Ketterman, A.J. An electron-sharing network involved in the catalytic mechanism is functionally conserved in different glutathione transferase classes J. Biol. Chem., 280 (2005),pp. 31776-31782
|
[35] |
Zeng, Q.Y., Wang, X.R. FEBS Lett., 579 (2005),pp. 2657-2662
|