[1] |
Abu-Shaar, M., Ryoo, H.D., Mann, R.S. Control of the nuclear localization of extradenticle by competing nuclear import and export signals Genes Dev., 13 (1999),pp. 935-945
|
[2] |
Ayyar, S., Jiang, J., Collu, A. et al. Development, 130 (2003),pp. 2841-2852
|
[3] |
Bartholin, L., Powers, S.E., Melhuish, T.A. et al. TGIF inhibits retinoid signaling Mol. Cell. Biol., 26 (2006),pp. 990-1001
|
[4] |
Benassayag, C., Montero, L., Colombie, N. et al. Mol. Cell. Biol., 25 (2005),pp. 9897-9909
|
[5] |
Bertolino, E., Reimund, B., Wildt-Perinic, D. et al. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif J. Biol. Chem., 270 (1995),pp. 31178-31188
|
[6] |
Blanco-Arias, P., Sargent, C.A., Affara, N.A. The human-specific Yp11.2/Xq21.3 homology block encodes a potentially functional testis-specific TGIF-like retroposon Mamm. Genome., 13 (2002),pp. 463-468
|
[7] |
Britton, J.S., Lockwood, W.K., Li, L. et al. Dev. Cell., 2 (2002),pp. 239-249
|
[8] |
Chen, D., McKearin, D.M. Development, 130 (2003),pp. 1159-1170
|
[9] |
El-Jaick, K.B., Powers, S.E., Bartholin, L. et al. Functional analysis of mutations in TGIF associated with holoprosencephaly Mol. Genet. Metab., 90 (2007),pp. 97-111
|
[10] |
Gao, X., Neufeld, T.P., Pan, D. Dev. Biol., 221 (2000),pp. 404-418
|
[11] |
Gao, X., Zhang, Y., Arrazola, P. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling Nat. Cell Biol., 4 (2002),pp. 699-704
|
[12] |
Goberdhan, D.C., Paricio, N., Goodman, E.C. et al. Genes Dev., 13 (1999),pp. 3244-3258
|
[13] |
Gongal, P.A., Waskiewicz, A.J. Zebrafish model of holoprosencephaly demonstrates a key role for TGIF in regulating retinoic acid metabolism Hum. Mol. Genet., 17 (2008),pp. 525-538
|
[14] |
Gripp, K.W., Wotton, D., Edwards, M.C. et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination Nat. Genet., 25 (2000),pp. 205-208
|
[15] |
Hyman, C.A., Bartholin, L., Newfeld, S.J. et al. Mol. Cell. Biol., 23 (2003),pp. 9262-9274
|
[16] |
Imoto, I., Pimkhaokham, A., Watanabe, T. et al. Biochem. Biophys. Res. Commun., 276 (2000),pp. 264-270
|
[17] |
Jin, J.Z., Gu, S., McKinney, P. et al. Expression and functional analysis of Tgif during mouse midline development Dev. Dyn., 235 (2006),pp. 547-553
|
[18] |
Johnston, L.A., Prober, D.A., Edgar, B.A. et al. Cell, 98 (1999),pp. 779-790
|
[19] |
Kozma, S.C., Thomas, G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K Bioessays, 24 (2002),pp. 65-71
|
[20] |
Kuang, C., Xiao, Y., Yang, L. et al. Hum. Mol. Genet., 15 (2006),pp. 3508-3519
|
[21] |
Li, C.Y., Guo, Z., Wang, Z. Dev. Biol., 309 (2007),pp. 70-77
|
[22] |
Marquez, R.M., Singer, M.A., Takaesu, N.T. et al. Genetics, 157 (2001),pp. 1639-1648
|
[23] |
Melhuish, T.A., Wotton, D. The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF J. Biol. Chem., 275 (2000),pp. 39762-39766
|
[24] |
Neufeld, T.P., de Cruz la, A.F., Johnston, L.A. et al. Cell, 93 (1998),pp. 1183-1193
|
[25] |
Pierce, S.B., Yost, C., Britton, J.S. et al. Development, 131 (2004),pp. 2317-2327
|
[26] |
Song, H.J., Taylor, B.J. J. Neurobiol., 55 (2003),pp. 115-133
|
[27] |
Spagnoli, F.M., Brivanlou, A.H. The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm Development, 135 (2008),pp. 451-461
|
[28] |
Thomas, G. The S6 kinase signaling pathway in the control of development and growth Biol. Res., 35 (2002),pp. 305-313
|
[29] |
Wang, Z., Mann, R.S. Development, 130 (2003),pp. 2853-2865
|
[30] |
Wotton, D., Lo, R.S., Swaby, L.A. et al. Multiple modes of repression by the Smad transcriptional corepressor TGIF J. Biol. Chem., 274 (1999),pp. 37105-37110
|
[31] |
Wotton, D., Knoepfler, P.S., Laherty, C.D. et al. The Smad transcriptional corepressor TGIF recruits mSin3 Cell Growth Differ., 12 (2001),pp. 457-463
|
[32] |
Xu, E.Y., Lee, D.F., Klebes, A. et al. Hum. Mol. Genet., 12 (2003),pp. 169-175
|