[1] |
Adachi, J., Hasegawa, M. MOLPHY version 2.3: Programs for molecular phylogenetics. I. PROTML: Maximum likelihood inference of protein phylogeny Comput. Sci. Monogr., 28 (1996),pp. 1-150
|
[2] |
Benton, M.J.
|
[3] |
Cao, Y., Adachi, J., Hasegawa, M. Comment on the quartet puzzling method for finding maximum-likelihood tree topologies Mol. Biol. Evol., 1 (1998),pp. 87-89
|
[4] |
Carroll, R.L.
|
[5] |
Carroll, R.L.
|
[6] |
Delsuc, F., Brinkmann, H., Chourrout, D. et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates Nature, 439 (2006),pp. 965-968
|
[7] |
Dumeril, A.M.C.
|
[8] |
Felsenstein, J. Cases in which parsimony and compatibility methods will be positively misleading Syst. Zool., 27 (1978),pp. 401-410
|
[9] |
Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood Approach J. Mol. Evol., 17 (1981),pp. 368-376
|
[10] |
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap Evolution, 39 (1985),pp. 783-791
|
[11] |
Felsenstein, J.
|
[12] |
Fitch, W.M. Towards defining the course of evolution: Minimum change for a specific tree topology Syst. Zool., 20 (1971),pp. 406-416
|
[13] |
Forey, P.L., Janvier, P. Agnathans and the origin of jawed vertebrates Nature, 361 (1993),pp. 129-134
|
[14] |
Goodman, M., Miyamoto, M.M., Czelusniak, J.
|
[15] |
Guürsoy, H.C., Koper, D., Benecke, B.J. J. Mol. Evol., 50 (2000),pp. 456-464
|
[16] |
Hardisty, M.W.
|
[17] |
Hedges, S.B.
|
[18] |
Janvier, P. Les nageoires paires des ostéostracés et la position systématique des céphalaspidomorphes Ann. Paléontol. (Vertébrés), 64 (1978),pp. 113-142
|
[19] |
Janvier, P. The phylogeny of the Craniata, with particular reference to the significance of the fossil agnathans J. Vertebr. Paleontol., 1 (1981),pp. 121-159
|
[20] |
Janvier, P. The dawn of the vertebrates: Characters versus common ascent in the rise of current vertebrate phylogenies Paleontology, 39 (1996),pp. 259-287
|
[21] |
Janvier, P. A cold look at odd vertebrate phylogenies J. Mol. Evol., 46 (1998),pp. 375-377
|
[22] |
Kumar, S., Tamura, K., Nei, M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment British Biol., 2 (2004),pp. 150-163
|
[23] |
Lanfranchi, G., Pallavicini, A., Laveder, P. et al. Ancestral Hemoglobin switching in lampreys Dev. Biol., 164 (1994),pp. 402-408
|
[24] |
Lipscomb, D.L., Farris, J.S., Källersjo, M. et al. Support, ribosomal sequences, and the phylogeny of the eukaryotes Cladistics, 14 (1998),pp. 303-338
|
[25] |
Lovtrup, S.
|
[26] |
Mallatt, J., Sullivan, J. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes Mol. Biol. Evol., 15 (1998),pp. 1706-1718
|
[27] |
Mallatt, J., Sullivan, J., Winchell, C.J.
|
[28] |
Philippe, H., Chenuil, A., Adoutte, A. Can the Cambrian explosion be inferred through molecular phylogeny? Development Suppl., 11 (1994),pp. 15-25
|
[29] |
Rasmussen, A.S., Janke, A., Arnason, U. J. Mol. Evol., 46 (1998),pp. 382-388
|
[30] |
Rebecca, F.F., Peter, W.H. Bayesian phylogenetic analysis support monophyly of ambulacraria and of cyclostomes Zool. Sci., 19 (2002),pp. 593-599
|
[31] |
Rokas, A., Williams, B.L., King, N. Genome-scale approaches to resolving incongruence in molecular phylogenies Nature, 425 (2003),pp. 798-804
|
[32] |
Rzhetsky, A., Nei, M. A simple method for estimating and testing minimum-evolution trees Mol. Biol. Evol., 9 (1992),pp. 945-967
|
[33] |
Saitou, N., Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
|
[34] |
Shu, D.G., Luo, H.L., Conway, S.M. et al. Lower Cambrian vertebrates from south China Nature, 402 (1999),pp. 42-46
|
[35] |
Stock, D.W., Whitt, G.S. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group Science, 57 (1992),pp. 787-789
|
[36] |
Suzuki, M., Kubokawa, K., Nagasawa, H. et al. J. Mol. Endocrinol., 14 (1995),pp. 67-77
|
[37] |
Swofford, D.L. (2000). PAUP*. Phylogenetic Analysis Using Parsimony (* and other Methods), version 4. (Sunderland, Massachusetts: Sinauer Associates).
|
[38] |
Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z. et al. Molecular phylogeny of early vertebrates: Monophyly of the agnathans as revealed by sequences of 35 genes Mol. Biol. Evol., 20 (2003),pp. 287-292
|
[39] |
Takezaki, N., Gojobori, T. Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences Mol. Biol. Evol., 16 (1999),pp. 590-601
|
[40] |
Thompson, J.D., Gibson, T.J., Plewniak, F. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res., 24 (1997),pp. 4876-4882
|
[41] |
Turbeville, J.M., Schulz, J.R., Raff, R.A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology Mol. Biol. Evol., 11 (1994),pp. 648-655
|
[42] |
Vienne, A., Pontarotti, P. Metaphylogeny of 82 gene families sheds a new light on chordate evolution Int. J. Biol. Sci., 2 (2006),pp. 32-37
|
[43] |
Yalden, D.W. Feedings mechanisms as evidence for cyclostome monophyly Zool. J. Linn Soc., 84 (1985),pp. 291-300
|
[44] |
Yang, Z. PAML: A program package for phylogenetic analysis by maximum likelihood Comput. Appl. Biosci., 13 (1997),pp. 555-556
|