5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 5
May  2008
Turn off MathJax
Article Contents

Establishment of paternity testing system using microsatellite markers in Chinese Holstein

doi: 10.1016/S1673-8527(08)60040-5
More Information
  • Corresponding author: E-mail address: changy@cau.edu.cn (Yuan Zhang)
  • Received Date: 2007-08-15
  • Accepted Date: 2007-12-02
  • Rev Recd Date: 2007-12-01
  • Available Online: 2008-05-20
  • Publish Date: 2008-05-20
  • To estimate the efficiency of microsatellite markers in paternity testing among Chinese Holstein, 30 microsatellite loci were used to differentiate 330 Chinese Holstein genotypes, according to the calculation of the allele frequency, number of alleles, effective number of alleles, genetic heterozygosity, polymorphic information content (PIC), and the exclusion probability in this cattle population. The results demonstrated that the exclusion probability ranged from 0.620 in locus BM1818 to 0.265 in locus INRA005 with the average of 0.472 and 11 microsatellite markers exceeding 0.5. The combined exclusion probability of nine microsatellite markers was over 0.99. The result showed that paternity testing of Chinese Holstein was basically resolved using the nine microsatellite markers selected.
  • loading
  • [1]
    Bredbacka, P., Koskinen, M.T. Microsatellite panels suggested for parentage testing in cattle by ISAG: Informativeness revealed in Finnish Ayrshire and Holstein-Friesian populations Agri. Food Sci., 8 (1999),pp. 233-237
    [2]
    Ellegren, H. Microsatellites: Simple sequence with complex evolution Nat. Rev. Genet., 5 (2004),pp. 435-445
    [3]
    Fan, B., Liu, B. Employment of DNA microsatellite markers in animal individual and breeds identification Bull. Anim. Biol. Technol., 8 (2002),pp. 35-38
    [4]
    Geldermann, H., Pieper, U., Weber, W.E. Effect of misidentification on the estimation of breeding value and heritability in cattle J. Anim. Sci., 63 (2003),pp. 1759-1768
    [5]
    Gong, D.Q., Zhang, H., Zhang, J. et al. Analysis of relationship of 11 breeds of Duck population using microsatellite markers Bull. Husbandry Veterinary Med., 36 (2005),pp. 1256-1260
    [6]
    Heyen, D.W., Beever, J.E., Da, Y. et al. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing Anim. Genet., 28 (1997),pp. 21-27
    [7]
    Israel, C., Weller, J.I. Effect of misidentification on genetic gain and estimation of breeding value in dairy cattle population J. Dairy Sci., 83 (2000),pp. 181-187
    [8]
    Kashi, Y., Lipkin, E., Darvasi, A. Parentage identification in the bovine using deoxyribonucleic acid fingerprints J. Dairy Sci., 73 (1990),pp. 3306-3311
    [9]
    Luikart, G., Biju-Duval, M.P., Ertugrul, O. Anim. Genet., 30 (1999),pp. 431-438
    [10]
    Mommens, G., Zeveren, A.V., Peelman, L.J. Anim. Genet., 29 (1998),pp. 12-18
    [11]
    Raymond, M., Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism J. Heredity, 86 (1995),pp. 248-249
    [12]
    Ron, M., Blank, Y., Band, M. et al. Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement J. Dairy Sci., 79 (1996),pp. 676-681
    [13]
    Visscher, P.M., Wooliams, J.A., Smith, D. et al. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection J. Dairy Sci., 85 (2002),pp. 2368-2375
    [14]
    Zhang, Y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return