5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 4
Apr.  2008
Turn off MathJax
Article Contents

Development of microsatellite markers and their utilization in genetic diversity analysis of cultivated and wild populations of the mud carp (Cirrhina molitorella)

doi: 10.1016/S1673-8527(08)60028-4
More Information
  • Corresponding author: E-mail address: sunxw2002@163.com (Xiaowen Sun)
  • Received Date: 2007-06-13
  • Accepted Date: 2007-09-24
  • Rev Recd Date: 2007-09-24
  • Available Online: 2008-04-24
  • Publish Date: 2008-04-20
  • Microsatellite markers have been increasingly used in genetic studies on fishery species because of their high applicability in selective breeding programs. Here we reported the development of microsatellite markers and their utilization in mud carp (Cirrhina molitorella). An (CA)15 enriched library has been constructed for mud carp, using the magnetic beads enrichment procedure. Sequence analysis of 60 randomly picked positive colonies indicate that 56 (93.3%) of the colonies contain microsatellites. Microsatellite polymorphism was assessed using 10 mud carp individuals, and 12 microsatellite loci turned out to be polymorphic. We utilized these loci to study the genetic diversity of a wild population (WM) and a cultured population (CM) of the mud carp. A total of 109 alleles were detected with an average of 9.08 alleles per locus. The mean value of the observed heterozygosity of WM and CM was 0.6361 and 0.6417, respectively, and significant decrease of genetic diversity in CM was not observed. The genetic distance between the two populations was 0.1546 and the value of was 0.0473. This showed that there existed a slight genetic differentiation between WM and CM.
  • loading
  • [1]
    Alexander, T., Theodore, J.A., John, L. et al. Aquat. Living Resour., 15 (2001),pp. 351-359
    [2]
    Beardmore, J.A., Mair, G.C., Lewis, R.I. Biodiversity in aquatic systems in relation to aquaculture Aquac. Res., 28 (1997),pp. 829-839
    [3]
    Beckman, J.S., Weber, J.L. Survey of human and rat microsatellites Genomics, 12 (1992),pp. 627-631
    [4]
    Brown, J., Hardwick, L.J., Wright, A.F. A simple method for rapid isolation of microsatellites from yeast artificial chromosomes Mol. Cell Probes, 9 (1995),pp. 53-57
    [5]
    Castro, J., Bouza, C., Sanchez, L. et al. Mar. Biotechnol. (NY), 5 (2003),pp. 584-592
    [6]
    Cheng, F., Ye, W., Ye, F.L. Zool. Res., 28 (2007),pp. 119-125
    [7]
    Cruz, P., Ibarra, A.M., Mejia-Ruiz, H. et al. Mar. Biotechnol. (NY), 6 (2004),pp. 157-164
    [8]
    Cui, J.Z., Shen, X.Y., Yang, G.P. Aquaculture, 250 (2005),pp. 129-137
    [9]
    Ferguson, M. The role of molecular genetic markers in the management of cultured fish Rev. Fish Biol. Fish, 4 (1994),pp. 351-373
    [10]
    Hamada, H., Petrino, M.G., Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 6465-6469
    [11]
    Hedgecock, D., Sly, F.L. Aquaculture, 88 (1990),pp. 21-38
    [12]
    Jackson, T.R., Martin-Robichaud, D.J., Reith, M.E. Aquaculture, 220 (2003),pp. 245-259
    [13]
    Kijas, J.M.H., Fowler, J.C.S., Garbett, C.A. et al. Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles Biotechniques, 16 (1994),pp. 656-662
    [14]
    Kumagai, K., Barinova, A.A., Nakajima, M. et al. Mar. Biotechnol. (NY), 6 (2004),pp. 221-228
    [15]
    Lagercrantz, U., Ellegren, H., Andersson, L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates Nucleic. Acids Res., 21 (1993),pp. 1111-1115
    [16]
    Li, Q., Park, C., Endo, T. et al. Aquaculture, 235 (2004),pp. 207-222
    [17]
    Litt, M., Luty, J.A. Am. J. Hum. Genet., 44 (1989),pp. 397-401
    [18]
    Liu, Z.J., Cordes, J.F. DNA marker technologies and their applications in aquaculture genetics Aquaculture, 238 (2004),pp. 1-37
    [19]
    Nei, M., Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance Genetics, 76 (1974),pp. 379-390
    [20]
    O'Connell, M., Wright, J.M. Microsatellite DNA in fishes Rev. Fish Biol. Fish, 7 (1997),pp. 331-363
    [21]
    Peyush, P., Lalit, N., Vindhya, M. et al. Acta Zool. Sin., 51 (2005),pp. 167-170
    [22]
    Primmer, C.R., Raudsepp, T., Chowdhary, B.P. et al. Low frequency of microsatellites in the avian genome Genome Res., 7 (1997),pp. 471-482
    [23]
    Qiu, C.Y., Wu, Y.Y., Li, L.H. et al. J. Jimei Univ. (Natural Science), 10 (2005),pp. 8-11
    [24]
    Quan, Y.C., Sun, X.W., Liang, L.Q. Acta Genet. Sin., 33 (2006),pp. 908-916
    [25]
    Queller, D.C., Strassmann, J.E., Hughes, C.R. Microsatellites and kinship Trends Ecol. Evol., 8 (1993),pp. 285-288
    [26]
    Sambrook, J., Fritsch, E.F., Maniatis, T.
    [27]
    Skaala, O., Hbyheim, B., Glover, K. et al. Aquaculture, 240 (2004),pp. 131-143
    [28]
    Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers Nucleic. Acids Res., 17 (1989),pp. 6463-6471
    [29]
    Watanabe, T., Fujita, H., Yamasaki, K. et al. Mar. Biotechnol. (NY), 6 (2004),pp. 327-334
    [30]
    Weber, J.L., May, P.E. Abundant class of human DNA polymorphisms, which can be typed using the polymerase chain reaction Am. J. Hum. Genet., 44 (1989),pp. 388-396
    [31]
    Zheng, G.M., Zhu, X.P., Zhang, Y. et al. J. Agr. Biotechnol., 9 (2001),pp. 178-182
    [32]
    Zhu, X.P., Xia, S.L., Zhang, Y. et al. Preliminary study on transgenic mud carp of antifreeze protein gene J. Fish Sci. China, 4 (1997),pp. 70-80
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return