| [1] | 
					 Amin, J., Ananthan, J., Voellmy, R. Key features of heat shock regulatory elements Mol. Cell Biol., 8 (1998),pp. 3761-3769 
						
					 | 
			
| [2] | 
					 Bailey, T.L., Gribskov, M. Combining evidence using p-values: application to sequence homology searches Bioinformatics., 14 (1998),pp. 48-54 
						
					 | 
			
| [3] | 
					 Bienz, M., Pelham, H.R. Mechanisms of heat-shock gene activation in higher eukaryotes Adv. Genet., 24 (1987),pp. 31-72 
						
					 | 
			
| [4] | 
					 Cannon, S.B., Mitra, A., Baumgarten, A. et al. BMC Plant Biol., 4 (2004),p. 10 
						
					 | 
			
| [5] | 
					 Chen, J.N., Zhang, X.T. New progress in research on functions of heat shock protein in human and plants Hereditas (Beijing), 19 (1997),pp. 45-48 
						
					 | 
			
| [6] | 
					 Chen, X.J., Ye, C.J., Lu, H.Y. Acta Genet. Sin., 28 (2006),pp. 1411-1420 
						
					 | 
			
| [7] | 
					 Chu, Y., Solski, P.A., Khosravi-Far, R. et al. J. Biol. Chem., 271 (1996),pp. 6497-6501 
						
					 | 
			
| [8] | 
					 Cicero, M.P., Hubl, S.T., Harrison, C.J. et al. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity Nucleic Acids Res., 29 (2001),pp. 1715-1723 
						
					 | 
			
| [9] | 
					 Clos, J., Westwood, J.T., Becker, P.B. et al. Cell, 63 (1990),pp. 1085-1097 
						
					 | 
			
| [10] | 
					 Cokol, M., Nair, R., Rost, B. Finding nuclear localization signals EMBO Rep., 1 (2000),pp. 411-415 
						
					 | 
			
| [11] | 
					 Czarnecka-Verner, E., Yuan, C.X., Scharf, K.D. et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential Plant Mol. Biol., 43 (2000),pp. 459-471 
						
					 | 
			
| [12] | 
					 Delorenzi, M., Speed, T. An HMM model for coiled-coil domains and a comparison with PSSM-based predictions Bioinformatics, 18 (2002),pp. 617-625 
						
					 | 
			
| [13] | 
					 Doring, P., Treuter, E., Kistner, C. et al. Plant Cell, 12 (2000),pp. 265-278 
						
					 | 
			
| [14] | 
					 Drees, B.L., Grotkopp, E.K., Nelson, H.C. J. Mol. Biol., 273 (1997),pp. 61-74 
						
					 | 
			
| [15] | 
					 Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res., 32 (2004),pp. 1792-1797 
						
					 | 
			
| [16] | 
					 Felsenstein, J. PHYLIP-Phylogeny Inference Package (Version 3.2) Cladistics, 5 (1989),pp. 164-166 
						
					 | 
			
| [17] | 
					 Feng, Y., Liu, Q.P., Xue, Q.Z. Acta Genet. Sin., 31 (2004),pp. 1284-1293 
						
					 | 
			
| [18] | 
					 Gorlich, D., Kutay, U. Transport between the cell nucleus and the cytoplasm Annu. Rev. Cell Dev. Biol., 15 (1999),pp. 607-660 
						
					 | 
			
| [19] | 
					 Guo, A., He, K., Liu, D. et al. Bioinformatics, 21 (2005),pp. 2568-2569 
						
					 | 
			
| [20] | 
					 Harrison, C.J., Bohm, A.A., Nelson, H.C. Crystal structure of the DNA binding domain of the heat shock transcription factor Science, 263 (1994),pp. 224-227 
						
					 | 
			
| [21] | 
					 Hartl, F.U., Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein Science, 295 (2002),pp. 1852-1858 
						
					 | 
			
| [22] | 
					 Heerklotz, D., Doring, P., Bonzelius, F. et al. Mol. Cell Biol., 21 (2001),pp. 1759-1768 
						
					 | 
			
| [23] | 
					 Hubel, A., Schoffl, F. Plant Mol. Biol., 26 (1994),pp. 353-462 
						
					 | 
			
| [24] | 
					 Kent, W.J., Baertsch, R., Hinrichs, A. et al. Evolution's cauldron: duplication. deletion. and rearrangement in the mouse and human genomes Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11484-11489 
						
					 | 
			
| [25] | 
					 Kotak, S., Port, M., Ganguli, A. et al. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization Plant J., 39 (2004),pp. 98-112 
						
					 | 
			
| [26] | 
					 Kumar, S., Gadagkar, S.R. Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences Genetics, 158 (2001),pp. 1321-1327 
						
					 | 
			
| [27] | 
					 la Cour, T., Kiemer, L., Molgaard, A. et al. Analysis and prediction of leucine-rich nuclear export signals Protein Eng. Des. Sel., 17 (2004),pp. 527-536 
						
					 | 
			
| [28] | 
					 Letunic, I., Copley, R.R., Schmidt, S. et al. SMART 4.0: towards genomic data integration Nucleic Acids Res., 32 (2004),pp. D142-D144 
						
					 | 
			
| [29] | 
					 Li, C.X., Yang, Q. Acta Genet. Sin., 25 (2003),pp. 177-180 
						
					 | 
			
| [30] | 
					 Li, X., Duan, X., Jiang, H. et al. Plant Physiol., 141 (2006),pp. 1167-1184 
						
					 | 
			
| [31] | 
					 Link, V., Sinha, A.K., Vashista, P. et al. A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response FEBS Lett., 531 (2002),pp. 179-183 
						
					 | 
			
| [32] | 
					 Liu, J.G., Yao, Q.H., Zhang, Z. et al. Biochem Mol. Biol., 38 (2005),pp. 602-608 
						
					 | 
			
| [33] | 
					 Lohmann, C., Eggers-Schumacher, G., Wunderlich, M. et al. Mol. Genet. Genomics., 271 (2004),pp. 11-21 
						
					 | 
			
| [34] | 
					 Lyck, R., Harmening, U., Hohfeld, I. et al. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors Planta., 202 (1997),pp. 117-125 
						
					 | 
			
| [35] | 
					 McGinnis, S., Madden, T.L. BLAST: at the core of a powerful and diverse set of sequence analysis tools Nucleic Acids Res., 32 (2004),pp. W20-W25 
						
					 | 
			
| [36] | 
					 Mehan, M.R., Freimer, N.B., Ophoff, R.A. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture Hum Genomics, 1 (2004),pp. 335-344 
						
					 | 
			
| [37] | 
					 Morimoto, R.I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators Genes Dev., 12 (1998),pp. 3788-3796 
						
					 | 
			
| [38] | 
					 Nover, L., Bharti, K., Doring, P. et al. Cell Stress Chaperones, 6 (2001),pp. 177-189 
						
					 | 
			
| [39] | 
					 Nover, L., Scharf, K.D., Gagliardi, D. et al. Cell Stress Chaperones, 1 (1996),pp. 215-223 
						
					 | 
			
| [40] | 
					 Ouyang, S., Zhu, W., Hamilton, J. et al. The TIGR rice genome annotation resource: improvements and new features Nucleic Acids Res., 35 (2007),pp. D846-D851 
						
					 | 
			
| [41] | 
					 Page, R.D. TreeView: an application to display phylogenetic trees on personal computers Comput. Appl. Biosci., 12 (1996),pp. 357-358 
						
					 | 
			
| [42] | 
					 Peteranderl, R., Rabenstein, M., Shin, Y.K. et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor Biochemistry, 38 (1999),pp. 3559-3569 
						
					 | 
			
| [43] | 
					 Pruitt, K.D., Tatusova, T., Maglott, D.R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes. transcripts and proteins Nucleic Acids Res., 33 (2005),pp. D501-D504 
						
					 | 
			
| [44] | 
					 Rabindran, S.K., Giorgi, G., Clos, J. et al. Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 6906-6910 
						
					 | 
			
| [45] | 
					 Richard Durbin, S.E., Anders, K., Graeme, M. 
						
					 | 
			
| [46] | 
					 Sarge, K.D., Zimarino, V., Holm, K. et al. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability Genes Dev., 5 (1991),pp. 1902-1911 
						
					 | 
			
| [47] | 
					 Scharf, K.D., Heider, H., Hohfeld, I. et al. Mol. Cell Biol., 18 (1998),pp. 2240-2251 
						
					 | 
			
| [48] | 
					 Scharf, K.D., Rose, S., Zott, W. et al. EMBO J., 9 (1990),pp. 4495-4501 
						
					 | 
			
| [49] | 
					 Schuetz, T.J., Gallo, G.J., Sheldon, L. et al. Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 6911-6915 
						
					 | 
			
| [50] | 
					 Schultheiss, J., Kunert, O., Gase, U. et al. Eur. J. Biochem., 236 (1996),pp. 911-921 
						
					 | 
			
| [51] | 
					 Sorger, P.K., Pelham, H.R. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation Cell, 54 (1988),pp. 855-864 
						
					 | 
			
| [52] | 
					 Tatusov, R.L., Koonin, E.V., Lipman, D.J. A genomic perspective on protein families Science, 278 (1997),pp. 631-637 
						
					 | 
			
| [53] | 
					 Thompson, J.D., Gibson, T.J., Plewniak, F. et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res., 25 (1997),pp. 4876-4882 
						
					 | 
			
| [54] | 
					 Thornton, J.W., DeSalle, R. Gene family evolution and homology: genomics meets phylogenetics Annu. Rev. Genomics Hum. Genet., 1 (2000),pp. 41-73 
						
					 | 
			
| [55] | 
					 Treuter, E., Nover, L., Ohme, K. et al. Promoter specificity and deletion analysis of three heat stress transcription factors of tomato Mol. Gen. Genet., 240 (1993),pp. 113-125 
						
					 | 
			
| [56] | 
					 Wiederrecht, G., Seto, D., Parker, C.S. Cell, 54 (1988),pp. 841-853 
						
					 | 
			
| [57] | 
					 Wu, C. Heat shock transcription factors: structure and regulation Annu Rev Cell Dev Biol., 11 (1995),pp. 441-469 
						
					 | 
			
| [58] | 
					 Xiao, H., Lis, J.T. Germline transformation used to define key features of heat-shock response elements Science, 239 (1988),pp. 1139-1142 
						
					 | 
			
| [59] | 
					 Young, J.C., Barral, J.M., Ulrich, H.F. More than folding: localized functions of cytosolic chaperones Trends Biochem Sci., 28 (2003),pp. 541-547 
						
					 | 
			
| [60] | 
					 Yuan, Q., Ouyang, S., Liu, J. et al. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists Nucleic Acids Res, 31 (2003),pp. 229-233 
						
					 | 
			
| [61] | 
					 Zhang, H.Y., Li, H.Y., Lin, J.T. Cloning and analysis of rat heat shock factor binding protein 1 Acat Geneti. Sin., 26 (2004),pp. 647-652 
						
					 |