5.9
CiteScore
5.9
Impact Factor
Volume 34 Issue 7
Jul.  2007

Fanconi Anemia and Ubiquitination

doi: 10.1016/S1673-8527(07)60065-4
More Information
  • Corresponding author: E-mail address: amms832@126.com (Peitang Huang)
  • Received Date: 2006-11-24
  • Accepted Date: 2006-12-28
  • Available Online: 2007-07-20
  • Publish Date: 2007-07-20
  • Fanconi anemia (FA) is a rare recessive hereditary disease characterized clinically by congenital defects, progressive bone-marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). To date, at least 12 FA genes have been found deleted or mutated in FA cells, and 10 FA gene products form a core complex involved in FA/BRCA2 DNA repair pathway?FA pathway. The ubiquitin E3 ligase FANCL, an important factor of FA core complex, co-functions with a new ubiquitin conjugating enzyme UBE2T to catalyze the monoubiquitination of FANCD2. FANCD2-Ub binds BRCA2 to form a new complex located in chromatin foci and then take part in DNA repair process. The deubiquitylating enzyme USP1 removes the mono-ubiquitin from FANCD2-Ub following completion of the repair process, then restores the blocked cell cycle to normal order by shutting off the FA pathway. In a word, the FANCD2 activity adjusted exquisitely by ubiquitination and/or deubiquitination in vivo may co-regulate the FA pathway involving in variant DNA repair pathway.
  • [1]
    D'Andrea, AD, Grompe, et al. The Fanconi anaemia/BRCA pathway Nat Rev Cancer, 3 (2003),pp. 23-34
    [2]
    Genetic basis of Fanconi anemia Curr Opin Hematol, 10 (2003),pp. 68-76
    [3]
    Meetei, AR, Levitus, et al. X-linked inheritance of Fanconi anemia complementation group B Nat Genet, 36 (2004),pp. 1219-1224
    [4]
    German, J, Schonberg, et al. A test for Fanconi's anaemia Blood, 69 (1987),pp. 1637-1641
    [5]
    Auerbach, AD A test for Fanconi's anemia Blood, 72 (1988),pp. 366-367
    [6]
    Poll, EH, Arwert, et al. Hum Genet, 71 (1985),pp. 206-210
    [7]
    Strathdee, CA, Duncan, et al. Evidence for at least 4 Fanconi anaemia genes including FACC on chromosome 9 Nat Genet, 1 (1992),pp. 196-198
    [8]
    Mil, Jun, Kupfer Gary, et al. The Fanconi anaemia core complex associates with chromatin during S phase Blood, 105 (2005),pp. 759-766
    [9]
    Wang, XZ, Andreassen, et al. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin Molecular and Cellular Biology, 24 (2004),pp. 5850-5862
    [10]
    Smalle, J, Vierstra, et al. The ubiquitin 26S proteasome proteolytic pathway Annu Rev Plant Biol, 55 (2004),pp. 555-590
    [11]
    Sun, L, Chen, et al. The novel functions of ubiquitination in signaling Curr Opin Cell Biol, 16 (2004),pp. 119-126
    [12]
    Fanconi, G Familiare infantile perniziosaartige anaemia (pernizioses blutbild und konstitution) Jahrb Kinderhilkd, 117 (1927),pp. 257-280
    [13]
    Joenje, H, Patel, et al. The emerging genetic and molecular basis of Fanconi anaemia Nat Rev Genet, 2 (2001),pp. 446-459
    [14]
    Reuter, TY, Medhurst, et al. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport Exp Cell Res, 289 (2003),pp. 211-221
    [15]
    Taniquchi, T, D'Andrea, et al. The molecular pathogenesis of Fanconi anemia: recent progress Blood, 107 (2006),pp. 4223-4233
    [16]
    Vlachos A, Lipton JM, Hematopoietic stem cell transplant for inherited bone marrow failure syndromes. In: Mehta P, ed. Pediatric Stem Cell Transplantation. Jones and Barlett, 2004, 281-311.
    [17]
    Strathdee, CA, Gavish, et al. Cloning of cDNAs for Fanconi's anaemia by functional complementation Nature, 356 (1992),pp. 763-767
    [18]
    Foe, JR, Rooimans, et al. Expression cloning of a cDNA for the major Fanconi anemia gene, FAA Nat Genet, 14 (1996),pp. 320-323
    [19]
    de Winter, JP, Waisfisz, et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9 Nat Genet, 20 (1998),pp. 281-283
    [20]
    de Winter, JP, Waisfisz, et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene Am J Hum Genet, 67 (2000),pp. 1306-1308
    [21]
    de Winter, JP, Rooimans, et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM Nat Genet, 24 (2000),pp. 15-16
    [22]
    Timmers, C, Taniguchi, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2 Mol Cell, 7 (2001),pp. 241-248
    [23]
    Howlett, NG, Taniguchi, et al. Biallelic inactivation of BRCA2 in Fanconi anemia Science, 297 (2002),pp. 606-609
    [24]
    Meetei, AR, de Winter, et al. A novel ubiquitin ligase is deficient in Fanconi anemia Nat Genet, 35 (2003),pp. 165-170
    [25]
    Meetei, AR, Medhurst, et al. A human ortholog of archael DNA repair protein HEF is defective in Fanconi anemia complementation group M Nat Genet, 37 (2005),pp. 958-963
    [26]
    Garcia-Higuera, I, Taniguchi, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway Mol Cell, 7 (2001),pp. 249-262
    [27]
    Kennedy, RD, D'Andrea, et al. The Fanconi Anemia/BRCA pathway: new faces in the crowd Genes Dev, 19 (2005),pp. 2925-2940
    [28]
    Komori, K, Fujikane, et al. Novel endonuclease in Archaea cleaving DNA with various branched structure Genes Genet Syst, 77 (2002),pp. 227-241
    [29]
    Bridge, WL, Vandenberg, et al. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair Nat Genet, 37 (2005),pp. 953-957
    [30]
    Levitus, M, Waisfisz, et al. The DNA Helicase BRIP1 is defective in Fanconi anemia complementation group J Nat Genet, 37 (2005),pp. 934-935
    [31]
    Litman, R, Peng, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ Cancer Cell, 8 (2005),pp. 255-265
    [32]
    Ciechanover, A The ubiquitin proteolytic system: From a vague idea, through basic mechanisms, and onto human diseases and drug targeting Neurology, 66 (2006),pp. 7-19
    [33]
    Robinson, PA, Ardley, et al. Ubiquitin-protein ligases J Cell Sci (2004),pp. 5191-5194
    [34]
    Lorick, K, Jensen, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2) dependent ubiquitination Proc Natl Acad Sci USA, 96 (1999),pp. 11364-11369
    [35]
    Joazeiro, CAP, Weissman, et al. RING finger proteins: mediators of ubiquitin ligase activity Cell, 102 (2000),pp. 549-552
    [36]
    Mallery, DL, Vandenberg, et al. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chain EMBO J, 21 (2002),pp. 6755-6762
    [37]
    Li, S, Ting, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response Nature, 406 (2000),pp. 210-215
    [38]
    Scully, R, Ganesan, et al. Genetic analysis of BRCA1 function in a defined tumor cell line Mol Cell, 4 (1999),pp. 1093-1099
    [39]
    Vandenberg, CJ, Gergely, et al. BRCA1-Independent Ubiquitination of FANCD2 Mol Cell, 12 (2003),pp. 247-254
    [40]
    Meetei, AR, Yan, et al. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiq-uitination Cell Cycle, 3 (2004),pp. 179-181
    [41]
    Li, D, Roberts, et al. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases Cell Mol Life Sci, 58 (2001),pp. 2085-2097
    [42]
    Gurtan, AM, Stuckert, et al. The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly J Biol Chem, 281 (2006),pp. 10896-10905
    [43]
    Shi, X, Hong, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression Nature, 442 (2006),pp. 96-99
    [44]
    Laurent, C, Don, et al. PHD domains and E3 ubiquitin ligases: viruses make the connection Trends Cell Biol, 13 (2002),pp. 7-12
    [45]
    Machida, YJ, Machida, et al. UBE2T Is the E2 in the Fanconi Anemia Pathway and Undergoes Negative Autoregulation Mol Cell, 23 (2006),pp. 589-596
    [46]
    Marieke, L, Martin, et al. Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes Blood, 103 (2004),pp. 2498-2503
    [47]
    Zheng, N, Wang, et al. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases Cell, 102 (2000),pp. 533-539
    [48]
    Yamanaka, K, Ishikawa, et al. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2 Nat Cell Biol, 5 (2003),pp. 336-340
    [49]
    Mil, J, Kupfer, et al. The Fanconi anemia core complex associates with chromatin during S phase Blood, 105 (2005),pp. 759-766
    [50]
    Amerik, AY, Hochstrasser, et al. Mechanism and function of deubiquitylating enzymes Biochim Biophys Acta, 1695 (2004),pp. 189-207
    [51]
    Nijman, SM, Huang, et al. The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway Mol Cell, 17 (2005),pp. 331-339
    [52]
    de Winter, JP, van der Weel, et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG Hum Mol Genet, 9 (2000),pp. 2665-2674
  • Relative Articles

    [1]Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001
    [2]Kevin Christian Montecillo Gulay, Keisuke Aoshima, Yuki Shibata, Hironobu Yasui, Qin Yan, Atsushi Kobayashi, Takashi Kimura. KDM2B promotes cell viability by enhancing DNA damage response in canine hemangiosarcoma[J]. Journal of Genetics and Genomics, 2021, 48(7): 618-630. doi: 10.1016/j.jgg.2021.02.005
    [3]Ning Zhou, Liuxin Shi, Shan Shan, Zheng Zhou. Molecular basis for the selective recognition and ubiquitination of centromeric histone H3 by yeast E3 ligase Psh1[J]. Journal of Genetics and Genomics, 2021, 48(6): 463-472. doi: 10.1016/j.jgg.2021.04.007
    [4]Xiaolu Hu, Yan Li, Tianfang Zhang, Lin Li, She Chen, Xiaohong Wu, Haijun Li, Binjie Qi, Zuobing Chen. Phosphorylation of Ago2 is required for its role in DNA doublestrand break repair[J]. Journal of Genetics and Genomics, 2021, 48(4): 333-340. doi: 10.1016/j.jgg.2021.03.011
    [5]Nguyet-Minh Hoang, Lixin Rui. DNA methyltransferases in hematological malignancies[J]. Journal of Genetics and Genomics, 2020, 47(7): 361-372. doi: 10.1016/j.jgg.2020.04.006
    [6]Miao Li, Haiwei Feng, Zexiong Lin, Jiahuan Zheng, Dongteng Liu, Rui Guo, Junshi Li, Raymond H.W. Li, Ernest H.Y. Ng, Michael S.Y. Huen, P. Jeremy Wang, William S.B. Yeung, Kui Liu. The novel male meiosis recombination regulator coordinates the progression of meiosis prophase I[J]. Journal of Genetics and Genomics, 2020, 47(8): 451-465. doi: 10.1016/j.jgg.2020.08.001
    [7]Zhe Sun, Ji-Long Liu. mTOR-S6K1 pathway mediates cytoophidium assembly[J]. Journal of Genetics and Genomics, 2019, 46(2): 65-74. doi: 10.1016/j.jgg.2018.11.006
    [8]Guoling Li, Xianwei Zhang, Hao Ou, Haoqiang Wang, Dewu Liu, Huaqiang Yang, Zhenfang Wu. PIK-75 promotes homology-directed DNA repair[J]. Journal of Genetics and Genomics, 2019, 46(3): 141-144. doi: 10.1016/j.jgg.2019.03.002
    [9]Yi-Chun Huang, Henry Moreno, Sarayu Row, Dongyu Jia, Wu-Min Deng. Germline silencing of UASt depends on the piRNA pathway[J]. Journal of Genetics and Genomics, 2018, 45(5): 273-276. doi: 10.1016/j.jgg.2018.04.005
    [10]Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007
    [11]Haodong Xu, Jiaqi Zhou, Shaofeng Lin, Wankun Deng, Ying Zhang, Yu Xue. PLMD: An updated data resource of protein lysine modifications[J]. Journal of Genetics and Genomics, 2017, 44(5): 243-250. doi: 10.1016/j.jgg.2017.03.007
    [12]Huifang Guo, Peter German, Shanshan Bai, Sean Barnes, Wei Guo, Xiangjie Qi, Hongxiang Lou, Jiyong Liang, Eric Jonasch, Gordon B. Mills, Zhiyong Ding. The PI3K/AKT Pathway and Renal Cell Carcinoma[J]. Journal of Genetics and Genomics, 2015, 42(7): 343-353. doi: 10.1016/j.jgg.2015.03.003
    [13]Longhao Sun, Corrine Ying Xuan Chua, Weijun Tian, Zhixiang Zhang, Paul J. Chiao, Wei Zhang. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma[J]. Journal of Genetics and Genomics, 2015, 42(10): 563-577. doi: 10.1016/j.jgg.2015.07.003
    [14]Shi-Ming Luo, Heide Schatten, Qing-Yuan Sun. Sperm Mitochondria in Reproduction: Good or Bad and Where Do They Go?[J]. Journal of Genetics and Genomics, 2013, 40(11): 549-556. doi: 10.1016/j.jgg.2013.08.004
    [15]Peng-Juan Liang, Wen-Yuan Han, Qi-Hong Huang, Yan-Ze Li, Jin-Feng Ni, Qun-Xin She, Yu-Long Shen. Knockouts of RecA-Like Proteins RadC1 and RadC2 Have Distinct Responses to DNA Damage Agents in Sulfolobus islandicus[J]. Journal of Genetics and Genomics, 2013, 40(10): 533-542. doi: 10.1016/j.jgg.2013.05.004
    [16]Yu-Shan Chen, Xiao-Bo Qiu. Transcription-Coupled Replacement of Histones: Degradation or Recycling?[J]. Journal of Genetics and Genomics, 2012, 39(11): 575-580. doi: 10.1016/j.jgg.2012.09.001
    [17]Minhua Zheng, Zifeng Zhang, Xingcheng Zhao, Yuqiang Ding, Hua Han. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis[J]. Journal of Genetics and Genomics, 2010, 37(9): 573-582. doi: 10.1016/S1673-8527(09)60077-1
    [18]Yin Leng Lee, Xinran Xu, Sylvan Wallenstein, Jia Chen. Gene expression profiles of the one-carbon metabolism pathway[J]. Journal of Genetics and Genomics, 2009, 36(5): 277-282. doi: 10.1016/S1673-8527(08)60115-0
    [19]Jun Lin, Yihuai Hu, Bing Tian, Yuejin Hua. Evolution of double MutT/Nudix domain-containing proteins: similar domain architectures from independent gene duplication-fusion events[J]. Journal of Genetics and Genomics, 2009, 36(10): 603-610. doi: 10.1016/S1673-8527(08)60152-6
    [20]Yiming Sun, Tao Yang, Zhiheng Xu. The JNK Pathway and Neuronal Migration[J]. Journal of Genetics and Genomics, 2007, 34(11): 957-965. doi: 10.1016/S1673-8527(07)60108-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return