[1] |
Bloom, SE, Bacon, et al. Linkage of the major histocompatibility (B) complex and the nucleolar organizer in the chicken. Assignment to a microchromosome Journal of Heredity, 76 (1985),pp. 146-154
|
[2] |
Guillemot, F, Billault, et al. A molecular map of the chicken major histocompatibility complex: the class β?genes are closely-linked to the class I genes and the nucleolar organizer EMBO J, 7 (1988),pp. 2775-2785
|
[3] |
Bourlet, Y, Behar, et al. Isolation of chicken major histocompatibility complex class II (B-L) beta chain sequences: comparison with mammalian beta chains and expression in lymphoid organs EMBO J, 7 (1988),pp. 1031-1039
|
[4] |
Miller, MM, Goto, et al. Proceedings of National Academy of Science USA, 93 (1996),pp. 3958-3962
|
[5] |
Kaufman, J, Volk, et al. A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism Immunology Reviews, 143 (1995),pp. 63-88
|
[6] |
Zoorob, R, Bernot, et al. Chicken major histocompatibility complex class II B genes: analysis of interallelic and interlocus sequence variance European Journal of Immunology, 23 (1993),pp. 1139-1145
|
[7] |
Brown, JH, Jardetzky, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 Nature, 364 (1993),pp. 33-39
|
[8] |
Hedrick, PW Evolutionary genetics of the major histocompatibility complex American Naturalist, 143 (1994),pp. 945-964
|
[9] |
Penn, DJ, Potts, et al. The evolution of mating preferences and major histocompatibility complex genes American Naturalist, 153 (1999),pp. 145-164
|
[10] |
Nasir, L, Ndiaye, et al. Sequence polymorphism in the bovine major histocompatibility complex DQB loci Animal Genetics, 28 (1997),pp. 441-445
|
[11] |
Snibson, KJ, Maddox, et al. Allelic variation of ovine MHC class II DQA1 and DQA2 genes Animal Genetics, 29 (1998),pp. 356-362
|
[12] |
De, S, Singh, et al. MHC-DRB exon 2 allele polymorphism in Indian river buffalo (Bubalus bubalis) Animal Genetics, 33 (2002),pp. 215-219
|
[13] |
Zhou, H, Hickford, et al. Allelic polymorphism in the ovine DQA1 gene Journal of Animal Science, 82 (2004),pp. 8-16
|
[14] |
Bodmer, JG, Marsh, et al. Nomenclature for factors of the HLA system Tissue Antigens, 46 (1995),pp. 1-18
|
[15] |
Davies, CJ, Andersson, et al. Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee Animal Genetics, 28 (1997),pp. 159-168
|
[16] |
Andersson, L, Sigurdardottir, et al. Evolution of MHC polymorphism: extensive sharing of polymorphic sequence motifs between human and bovine DRB alleles Immunogenetics, 33 (1991),pp. 188-193
|
[17] |
Mikko, S, Spencer, et al. Journal of Heredity, 88 (1997),pp. 499-503
|
[18] |
Sena, L, Schneider, et al. Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles Animal Genetics, 34 (2003),pp. 1-10
|
[19] |
Simonsen, M, Crone, et al. The MHC haplotypes of the chicken Immunogenetics, 16 (1982),pp. 513-532
|
[20] |
Briles, WE, Bumstead, et al. Nomenclature for chicken major histocompatibility (B) complex Immunogenetics, 15 (1982),pp. 441-447
|
[21] |
Briles, WE, Briles, et al. Identification of haplotypes of the chicken major histocompatibility complex (B) Immunogenetics, 15 (1982),pp. 449-459
|
[22] |
Briles, WE, Goto, et al. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex Immunogenetics, 37 (1993),pp. 408-414
|
[23] |
Zoorob, R, Behar, et al. Organization of a functional chicken class II B gene Immunogenetics, 31 (1990),pp. 179-187
|
[24] |
Lakshmana, N, Gavora, et al. Major histocompatibility complex class ? DNA polymorphisms in chicken strains selected for Marek's disease resistance and egg production or egg production alone Poultry Science, 76 (1997),pp. 1517-1523
|
[25] |
Li, L, Johnson, et al. Molecular characterizaton of major histocompatibility complex (B) haplotypes in broiler chickens Animal Genetics, 28 (1997),pp. 258-267
|
[26] |
Li, L, JohnsonL, et al. The MHC of a broiler chicken line: serology, B-G genotypes, and B-F/B-LB sequences Immunogenetics, 49 (1999),pp. 215-224
|
[27] |
Zhang, D, O'Keefe, et al. A PCR method for typing B-Lβ? family (class ? MHC) alleles in broiler chickens Animal Genetics, 30 (1999),pp. 109-119
|
[28] |
Jacob, JP, Milne, et al. The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex Immunogenetics, 51 (2000),pp. 138-147
|
[29] |
Livant, EJ, Zhang, et al. Three new MHC haplotypes in broiler breeder chickens Animal Genetics, 32 (2001),pp. 123-131
|
[30] |
Iglesias, GM, Aoria, et al. Genotypic variability at the major histocompatibility complex (B and Rfp-Y) in Comperos broiler chickens Animal Genetics, 34 (2003),pp. 88-95
|
[31] |
Xu, RF, Li, et al. Sequence Comparison of MHC Class II β (exon 2) and Phylogenetic Relationship between Poultry and Mammalian Agricultural Sciences in China, 4 (2005),pp. 299-309
|
[32] |
Xu, RF
|
[33] |
Sambrook, J, Fritsch, et al.
|
[34] |
Kumar, S, Tamura, et al.
|
[35] |
Nei, M, Gojobori, et al. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions Molecular Biological Evolution, 3 (1986),pp. 418-426
|
[36] |
Lynch, M, Crease, et al. The analysis of population survey data on DNA sequence variation Molecular Biological Evolution, 79 (1990),pp. 377-394
|
[37] |
Jukes, TH, Cantor, et al.
|
[38] |
Rozas, J, Sánchez-DelBarrio, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods Bioinformatics, 19 (2003),pp. 2496-2497
|
[39] |
International Chicken Polymorphism Map Consortium A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms Nature, 432 (2004),pp. 717-722
|
[40] |
Nei, M
|
[41] |
Hughes, AL
|
[42] |
International Chicken Polymorphism Map Consortium A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms Nature, 432 (2004),pp. 695-716
|
[43] |
Begun, DJ, Aquadro, et al. Nature, 356 (1992),pp. 519-520
|
[44] |
Nachman, MW Single nucleotide polymorphisms and recombination rate in humans Trends Genet, 17 (2001),pp. 481-485
|
[45] |
Shia, YC, Bradshaw, et al. Polymerase chain reaction based genotyping for characterization of SLA-DQB and SLA-DRB alleles in domestic pigs Anim Genet, 26 (1995),pp. 91-100
|
[46] |
Paliakasis, K, Routsias, et al. Novel structural features of the human histocompatibility molecules HLA-DQ as revealed by modeling based on the published structure of the related molecule HLA-DR J Struct Biol, 117 (1996),pp. 145-163
|
[47] |
Seidl, C, Koch, et al. HLA-DR/DQ/DP interactions in rheumatoid arthritis Eur J Immunogenet, 24 (1997),pp. 365-376
|
[48] |
Toussirot, E, Auge, et al. HLA-DRB1 alleles and shared amino acid sequences in disease susceptibility and severity in patients from eastern France with rheumatoid arthritis J Rheumatol, 26 (1999),pp. 1446-1451
|
[49] |
Madden, DR, Gorga, et al. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC Cell, 70 (1992),pp. 1035-1048
|
[50] |
Cao, MD, Qin, et al.
|
[51] |
Chen, HL, Li, et al.
|
[52] |
Rietsch, A, Bessette, et al. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin J Bacteriol, 179 (1997),pp. 6602-6608
|
[1] | Fei Wang, Junjie Shao, Sangang He, Yingwei Guo, Xiangyu Pan, Yu Wang, Hojjat Asadollahpour Nanaei, Lei Chen, Ran Li, Han Xu, Zhirui Yang, Mingjun Liu, Yu Jiang. Allele-specific expression and splicing provide insight into the phenotypic differences between thin- and fat-tailed sheep breeds[J]. Journal of Genetics and Genomics, 2022, 49(6): 583-586. doi: 10.1016/j.jgg.2021.12.008 |
[2] | Qiuhong Wu, Yongxing Chen, Beibei Li, Jing Li, Panpan Zhang, Jingzhong Xie, Huaizhi Zhang, Guanghao Guo, Ping Lu, Miaomiao Li, Keyu Zhu, Wenling Li, Tzion Fahima, Eviatar Nevo, Hongjie Li, Lingli Dong, Zhiyong Liu. Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat[J]. Journal of Genetics and Genomics, 2022, 49(8): 787-795. doi: 10.1016/j.jgg.2022.01.010 |
[3] | Yanquan Lai, Fangchao Tao, Yu Zou, Min Huang, Kaiting Lin, Yang Li, Weilun Huang, Wanjun Zhou. Molecular spectrum of thalassemia in tropical Hainan Island of southern China: high allele frequency with low health burden[J]. Journal of Genetics and Genomics, 2022, 49(12): 1162-1164. doi: 10.1016/j.jgg.2022.03.010 |
[4] | Jiafei Shen, Jie Yu, Xuelei Dai, Mei Li, Gang Wang, Ningbo Chen, Hong Chen, Chuzhao Lei, Ruihua Dang. Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys[J]. Journal of Genetics and Genomics, 2021, 48(8): 737-745. doi: 10.1016/j.jgg.2021.05.012 |
[5] | Meng Qin, Xiaohui Zhu, Zhe Zhang, Xuemin Li, Zhiqiang Yan, Yuqian Wang, Shuo Guan, Yihua He, Wenxin Zhang, Liying Yan, Jie Qiao, Xu Zhi. Genetic analysis and preimplantation genetic diagnosis of Chinese Marfan syndrome patients[J]. Journal of Genetics and Genomics, 2019, 46(6): 319-323. doi: 10.1016/j.jgg.2019.04.003 |
[6] | Xiaoping Lan, Na Li, Hongling Wan, Lintong Luo, Yiming Wu, Sanxiang Li, Yu An, Bai-Lin Wu. Developing a one-step triplet-repeat primed PCR assay for diagnosing myotonic dystrophy[J]. Journal of Genetics and Genomics, 2018, 45(10): 549-552. doi: 10.1016/j.jgg.2018.06.008 |
[7] | Ruoxi Fan, Fei Liu, Hong Wu, Shifang Wu, Chunling Zhu, Yan Li, Guodong Wang, Yaping Zhang. A Positive Correlation between Elevated Altitude and Frequency of Mutant Alleles at the EPAS1 and HBB Loci in Chinese Indigenous Dogs[J]. Journal of Genetics and Genomics, 2015, 42(4): 173-177. doi: 10.1016/j.jgg.2015.02.006 |
[8] | Rongrong Wei, Frank T. DeVilbiss, Wanqing Liu. Genetic Polymorphism, Telomere Biology and Non-Small Lung Cancer Risk[J]. Journal of Genetics and Genomics, 2015, 42(10): 549-561. doi: 10.1016/j.jgg.2015.08.005 |
[9] | Xiuhua Yi, Zujian Zhang, Shengyuan Zeng, Chunyan Tian, Juncheng Peng, Min Li, Yue Lu, Qingcai Meng, Minghong Gu, Changjie Yan. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2011, 38(5): 217-223. doi: 10.1016/j.jgg.2011.03.011 |
[10] | Jie Chen, Yongfeng Shi, Wenzheng Liu, Rongyao Chai, Yaping Fu, Jieyun Zhuang, Jianli Wu. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae[J]. Journal of Genetics and Genomics, 2011, 38(5): 209-216. doi: 10.1016/j.jgg.2011.03.010 |
[11] | Jung-Ha Kang, Ki Hwan Yu, Jung-Youn Park, Chul-Min An, Je-Cheon Jun, Sang-Jun Lee. Allele-specific PCR genotyping of the HSP70 gene polymorphism discriminating the green and red color variants sea cucumber (Apostichopus japonicus)[J]. Journal of Genetics and Genomics, 2011, 38(8): 351-355. doi: 10.1016/j.jgg.2011.06.002 |
[12] | Xiangqian Zhao, Long Yang, Yan Zheng, Zhaohua Xu, Weiren Wu. Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.)[J]. Journal of Genetics and Genomics, 2009, 36(7): 435-442. doi: 10.1016/S1673-8527(08)60133-2 |
[13] | Xinran Xu, Jia Chen. One-carbon metabolism and breast cancer: an epidemiological perspective[J]. Journal of Genetics and Genomics, 2009, 36(4): 203-214. doi: 10.1016/S1673-8527(08)60108-3 |
[14] | Feng Chen, Yajun Deng, Yonghui Dang, Bo Zhang, Haofang Mu, Xiaoguang Yu, Lin Li, Chunxia Yan, Teng Chen. Genetic polymorphism of mitochondrial DNA HVS-I and HVS-II of Chinese Tu ethnic minority group[J]. Journal of Genetics and Genomics, 2008, 35(4): 225-232. doi: 10.1016/S1673-8527(08)60031-4 |
[15] | Yuhong Yang, Yunxiang Mu, Yu Zhao, Xinyu Liu, Lili Zhao, Junmei Wang, Yonghong Xie. Genetic Screening of the Lipoprotein Lipase Gene for Mutations in Chinese Subjects with or without Hypertriglyceridemia[J]. Journal of Genetics and Genomics, 2007, 34(5): 381-391. doi: 10.1016/S1673-8527(07)60041-1 |
[16] | Dongying Yang, Hong Chen, Xinzhuang Wang, Zhihuan Tian, Ligang Tang, Zhengfeng Zhang, Chuzhao Lei, Liangzhi Zhang, Yimin Wang. Association of Polymorphisms of Leptin Gene with Body Weight and Body Sizes Indexes in Chinese Indigenous Cattle[J]. Journal of Genetics and Genomics, 2007, 34(5): 400-405. doi: 10.1016/S1673-8527(07)60043-5 |
[17] | Hui Liu, Xiaobing Wu, Peng Yan, Zhigang Jiang. Polymorphism of Exon 3 of MHC Class II B Gene in Chinese Alligator (Alligator sinensis)[J]. Journal of Genetics and Genomics, 2007, 34(10): 918-929. doi: 10.1016/S1673-8527(07)60103-9 |
[18] | Binbin Li, Fuguang Zhong, Hongsheng Yi, Xianran Wang, Liangfang Li, Lilan Wang, Xiaolan Qi, Lifu Wu. Genetic Polymorphism of Mitochondrial DNA in Dong, Gelao, Tujia, and Yi Ethnic Populations from Guizhou, China[J]. Journal of Genetics and Genomics, 2007, 34(9): 800-811. doi: 10.1016/S1673-8527(07)60091-5 |
[19] | Li Geng, Zhenwei Yao, Hongchang Yang, Jianyun Luo, Lili Han, Qi Lu. Association of CA Repeat Polymorphism in Estrogen Receptor β Gene with Postmenopausal Osteoporosis in Chinese[J]. Journal of Genetics and Genomics, 2007, 34(10): 868-876. doi: 10.1016/S1673-8527(07)60098-8 |
[20] | Xingping Wang, Shangzhong Xu, Xue Gao, Hongyan Ren, Jinbao Chen. Genetic Polymorphism of TLR4 Gene and Correlation with Mastitis in Cattle[J]. Journal of Genetics and Genomics, 2007, 34(5): 406-412. doi: 10.1016/S1673-8527(07)60044-7 |